コード例 #1
0
ファイル: compass.py プロジェクト: chenzhenhu-yeah/nature
def df_hv(code, date):
    try:
        now = datetime.now()
        start_day = now - timedelta(days=480)
        start_day = start_day.strftime('%Y-%m-%d')

        if code[:2] == 'IO':
            df = get_inx('000300', start_day)
        else:
            fn = get_dss() + 'fut/bar/day_' + code + '.csv'
            df = pd.read_csv(fn)
        df = df[(df.date >= start_day) & (df.date <= date)]
        df = df.set_index('date')
        df = df.sort_index()

        df['ln'] = np.log(df.close)
        df['rt'] = df['ln'].diff(1)
        df['hv'] = df['rt'].rolling(20).std()
        df['hv'] *= np.sqrt(242) * 100

        df = df.iloc[-242:, ]
        df['value'] = df['hv']
        df = df[['value']]
        df.index.name = code + '_hv'
        return df
    except Exception as e:
        s = traceback.format_exc()
        to_log(s)

        return None
コード例 #2
0
def get_trade_preday(date):
    from nature import get_inx

    df = get_inx('000300')
    date_list = list(df.date)

    try:
        i = date_list.index(date)
    except:
        i = -1
    return date_list[i + 1]
コード例 #3
0
ファイル: sigma.py プロジェクト: chenzhenhu-yeah/nature
def calc_hv(date):
    df = get_inx('000300', '2020-01-01', date)
    df = df.set_index('date')
    df = df.sort_index()

    df['ln'] = np.log(df.close)
    df['rt'] = df['ln'].diff(1)
    df['hv'] = df['rt'].rolling(60).std()
    df['hv'] *= np.sqrt(242)

    cur = df.iloc[-1, :]
    return float(cur.hv), float(cur.close)
コード例 #4
0
def hv_show(code):
    # hv()
    now = datetime.now()
    start_day = now - timedelta(days=480)
    start_day = start_day.strftime('%Y-%m-%d')

    if code == '000300':
        df = get_inx('000300', start_day)
    else:
        fn = get_dss() + 'fut/bar/day_' + code + '.csv'
        df = pd.read_csv(fn)
        df = df[df.date >= start_day]

    df = df.set_index('date')
    df = df.sort_index()

    df['ln'] = np.log(df.close)
    df['rt'] = df['ln'].diff(1)
    df['hv'] = df['rt'].rolling(20).std()
    df['hv'] *= np.sqrt(242)

    df = df.iloc[-242:, :]
    cur = df.iloc[-1, :]
    hv = round(cur['hv'], 2)
    hv_rank = round((hv - df['hv'].min()) / (df['hv'].max() - df['hv'].min()),
                    2)
    hv_percentile = round(len(df[df.hv < hv]) / 242, 2)

    plt.figure(figsize=(13, 7))
    plt.title(code + '       hv: ' + str(hv) + '      hv Rank: ' +
              str(hv_rank) + '      hv Percentile: ' + str(hv_percentile))
    plt.xticks(rotation=90)
    plt.plot(df['hv'], '-*')
    plt.grid(True, axis='y')

    ax = plt.gca()
    for label in ax.get_xticklabels():
        label.set_visible(False)
    for label in ax.get_xticklabels()[1::30]:
        label.set_visible(True)
    for label in ax.get_xticklabels()[-1:]:
        label.set_visible(True)

    fn = 'static/hv_show.jpg'
    plt.savefig(fn)
    plt.cla()

    r = ''
    fn = 'hv_show.jpg'
    now = str(int(time.time()))
    r = '<img src=\"static/' + fn + '?rand=' + now + '\" />'
    return r
コード例 #5
0
def hs300_spread_show(start_day):
    df_300 = get_inx('000300', start_day)
    df_300 = df_300.set_index('date')
    df_300 = df_300.sort_index()
    # print(df_300.tail())

    fn = get_dss() + 'fut/cfg/opt_mature.csv'
    df_opt = pd.read_csv(fn)
    df = df_opt[(df_opt.pz == 'IO') &
                (df_opt.flag == df_opt.flag)]  # 筛选出不为空的记录
    df = df.sort_values('symbol')
    symbol_list = list(df.symbol)
    # print(symbol_list)

    plt.figure(figsize=(12, 8))
    plt.title('hs300_spread')
    for symbol in symbol_list:
        code = 'IF' + symbol[2:]
        fn = get_dss() + 'fut/bar/day_' + code + '.csv'
        if os.path.exists(fn) == False:
            continue
        df = pd.read_csv(fn)
        df = df[df.date >= start_day]
        df = df.set_index('date')
        df = df.sort_index()
        df['value'] = df.close - df_300.close
        # print(df.tail())

        plt.plot(df.value, label=code)

    plt.xticks(rotation=45)
    plt.grid(True, axis='y')
    ax = plt.gca()

    # for label in ax.get_xticklabels():
    #     label.set_visible(False)
    # for label in ax.get_xticklabels()[1::25]:
    #     label.set_visible(True)
    # for label in ax.get_xticklabels()[-1:]:
    #     label.set_visible(True)

    plt.legend()
    fn = 'static/hs300_spread_show.jpg'
    plt.savefig(fn)
    plt.cla()

    r = ''
    fn = 'hs300_spread_show.jpg'
    now = str(int(time.time()))
    r = '<img src=\"static/' + fn + '?rand=' + now + '\" />'
    return r
コード例 #6
0
def hv():
    # df = get_inx('000300', '2019-06-01', '2020-07-15')
    df = get_inx('000300', '2019-06-01')
    # df = df.sort_values('date')
    df = df.set_index('date')
    df = df.sort_index()

    df['ln'] = np.log(df.close)
    df['rt'] = df['ln'].diff(1)
    df['hv'] = df['rt'].rolling(20).std()
    df['hv'] *= np.sqrt(242)

    df = df.iloc[-242:, :]
    # print(df.head())
    # print(df.tail())

    cur = df.iloc[-1, :]
    hv = round(cur['hv'], 2)
    hv_rank = round((hv - df['hv'].min()) / (df['hv'].max() - df['hv'].min()),
                    2)
    # print('hv: ', hv)
    # print('hv Rank: ', hv_rank)

    # print('     均值:',df['hv'].mean())
    # print('0.2分位数:',np.percentile(df['hv'], 20))
    # print('0.5分位数:',np.percentile(df['hv'], 50))
    # print('0.8分位数:',np.percentile(df['hv'], 80))

    hv_percentile = round(len(df[df.hv < hv]) / 242, 2)
    # print('hv percentile: ', hv_percentile)

    plt.figure(figsize=(13, 7))
    plt.title('hv:' + str(hv) + '      hv Rank:' + str(hv_rank) +
              '      hv Percentile:' + str(hv_percentile))
    plt.xticks(rotation=45)
    plt.plot(df['hv'], '-*')
    plt.grid(True, axis='y')

    ax = plt.gca()
    for label in ax.get_xticklabels():
        label.set_visible(False)
    for label in ax.get_xticklabels()[1::30]:
        label.set_visible(True)
    for label in ax.get_xticklabels()[-1:]:
        label.set_visible(True)

    # plt.show()
    fn = 'static/vol_hv.jpg'
    plt.savefig(fn)
    plt.cla()
コード例 #7
0
def calc_greeks(year):
    c = input('请确认波指已维护最新值,press y to continue: ')
    if c != 'y':
        return

    fn_sigma = get_dss() + 'backtest/IO/hs300波指.csv'
    df_sigma = pd.read_csv(fn_sigma)
    df_sigma = df_sigma.set_index('date')

    mature_dict = {'IO2002':'2020-02-21','IO2003':'2020-03-20','IO2004':'2020-04-17','IO2005':'2020-05-15','IO2006':'2020-06-19',
                   'IO2007':'2020-07-17','IO2009':'2020-09-18','IO2012':'2020-12-18','IO2103':'2021-03-19'}

    fn1 = get_dss() + 'backtest/IO/' + 'IO' + year + '.csv'
    fn2 = get_dss() + 'backtest/IO/' + 'IO' + year + '_greeks.csv'

    df1 = pd.read_csv(fn1)
    df2 = pd.read_csv(fn2)
    df1 = df1.loc[len(df2):,:]
    # print(df1.head(3))

    for i, row in df1.iterrows():
        df_index = get_inx('000300', row.date, row.date)
        if len(df_index) == 0:
            print('缺少沪深300日线数据')
            assert False
        S0 = df_index.iat[0,3]
        # S0 = 3912.57

        call = True if row['symbol'][7] == 'C' else False
        K = float( row['symbol'][-4:] )
        r = 0.03
        C0 = float( row['close'] )

        sa = float( df_sigma.at[row.date, 'close'] ) / 100
        # sa = 0.2178
        # print(sa)

        if row['symbol'][:6] not in mature_dict.keys():
            assert False

        date_mature = mature_dict[ row['symbol'][:6] ]
        date_mature = datetime.datetime.strptime(date_mature, '%Y-%m-%d')
        today = datetime.datetime.strptime(row.date, '%Y-%m-%d')
        T = float((date_mature - today).days) / 365

        if T > 0:
            if call == True:
                n = 1
                iv = bsm_call_imp_vol(S0, K, T, r, C0)
            else:
                n = -1
                iv = bsm_put_imp_vol(S0, K, T, r, C0)

            row['hs300'] = S0
            row['sigma'] = sa
            row['delta9'] = delta(S0,K,r,T,sa,n)
            row['gamma'] = gamma(S0,K,r,T,sa)
            row['theta'] = theta(S0,K,r,T,sa,n)
            row['vega'] = vega(S0,K,r,T,sa)
            row['iv'] = iv
        else:
            row['hs300'] = S0
            row['delta9'] = 0
            row['gamma'] = 0
            row['theta'] = 0
            row['vega'] = 0
            row['sigma'] = 0

        df = pd.DataFrame([row])
        df.to_csv(fn2, index=False, mode='a', header=None)