コード例 #1
0
def weighted_map(ipix, npix, weights, localsize, comm):
    """ Make a map from particles, for quantities like
    
       W(t) = \int dx delta(t, x) w
       
       Parameters
       ----------
       ipix: array_like
     
       weights : array_like
    
       Returns
       -------
       Wmap, Nmap; distributed maps
       
       Wmap is the weighted map. Nmap is the number of objects
    """

    ipix, labels = numpy.unique(ipix, return_inverse=True)
    N = numpy.bincount(labels)
    weights = numpy.bincount(labels, weights)
    #print("shrink to %d from %d" % (len(ipix), len(labels)))

    del labels
 
    pairs = numpy.empty(len(ipix) + 1, dtype=[('ipix', 'i4'), ('N', 'i4'), ('weights', 'f8') ])
    pairs['ipix'][:-1] = ipix
    pairs['weights'][:-1] = weights
    pairs['N'][:-1] = N

    pairs['ipix'][-1] = npix - 1 # trick to make sure the final length is correct.
    pairs['weights'][-1] = 0
    pairs['N'][-1] = 0

    disa = DistributedArray(pairs, comm=comm)
    disa.sort('ipix')

    w = disa['ipix'].bincount(weights=disa['weights'].local, local=False, shared_edges=False)
    N = disa['ipix'].bincount(weights=disa['N'].local, local=False, shared_edges=False)

    if npix - w.cshape[0] != 0:
        if comm.rank == 0:
            print('padding -- this shouldnt have occured ', npix, w.cshape)
        # pad with zeros, since the last few bins can be empty.
        ipadding = DistributedArray.cempty((npix - w.cshape[0],), dtype='i4', comm=comm)
        fpadding = DistributedArray.cempty((npix - w.cshape[0],), dtype='f8', comm=comm)

        fpadding.local[:] = 0
        ipadding.local[:] = 0

        w = DistributedArray.concat(w, fpadding)
        N = DistributedArray.concat(N, ipadding)

    w = DistributedArray.concat(w, localsize=localsize)
    N = DistributedArray.concat(N, localsize=localsize)

    return w.local, N.local
コード例 #2
0
ファイル: HImodels.py プロジェクト: modichirag/21cm_cleaning
 def getinsat(self, mHIsat, satid, totalsize, localsize, comm):
     da = DistributedArray(satid, comm)
     mHI = da.bincount(mHIsat, shared_edges=False)
     zerosize = totalsize - mHI.cshape[0]
     zeros = DistributedArray.cempty(cshape=(zerosize, ), dtype=mHI.local.dtype, comm=comm)
     zeros.local[...] = 0
     mHItotal = DistributedArray.concat(mHI, zeros, localsize=localsize)
     return mHItotal
コード例 #3
0
ファイル: test_utils.py プロジェクト: bccp/nbodykit
def test_distributed_array_cempty(comm):
    from nbodykit.utils import DistributedArray, EmptyRank

    da = DistributedArray.cempty((20, 3), dtype=('f4', 3), comm=comm)

    assert_array_equal(comm.allgather(da.cshape), [(20, 3, 3)] * comm.size)

    assert_array_equal(da.local.shape, [5, 3, 3])
コード例 #4
0
ファイル: test_utils.py プロジェクト: twobombs/nbodykit
def test_distributed_array_cempty(comm):
    from nbodykit.utils import DistributedArray, EmptyRank

    da = DistributedArray.cempty((20, 3), dtype=('f4', 3), comm=comm)

    assert_array_equal(comm.allgather(da.cshape), [(20, 3, 3)] * comm.size)

    assert_array_equal(da.local.shape, [5, 3, 3])
コード例 #5
0
ファイル: HImodels.py プロジェクト: modichirag/21cm_cleaning
    def getinsat(self, mHIsat, satid, totalsize, localsize, comm):
       
        #print(comm.rank, np.all(np.diff(satid) >=0))
        #diff = np.diff(satid)
        #if comm.rank == 260: 
        #    print(satid[:-1][diff <0], satid[1:][diff < 0])

        da = DistributedArray(satid, comm)
        
        mHI = da.bincount(mHIsat, shared_edges=False)
        
        zerosize = totalsize - mHI.cshape[0]
        zeros = DistributedArray.cempty(cshape=(zerosize, ), dtype=mHI.local.dtype, comm=comm)
        zeros.local[...] = 0
        mHItotal = DistributedArray.concat(mHI, zeros, localsize=localsize)
        return mHItotal
コード例 #6
0
        N = da.bincount(shared_edges=False)

        print('rank, shid, N : ', rank, shid[:10], N.local[:10])
        print('rank, chid, csat, N : ', rank, chid[:10], cnsat[:10],
              N.local[:10])
        print('rank, cen.csize, N.cshape : ', rank, cen.csize, N.cshape)
        print('rank, cen.size, Nlocal.size : ', rank, cen.size, N.local.size)

        print(cen.csize - N.cshape)
        zerosize = (cen.csize - N.cshape[0])
        #start = (zerosize *rank // wsize)
        #end =  (zerosize *(rank+1) // wsize)
        #zeros = DistributedArray(np.zeros(end-start), comm=comm)
        print(zerosize, N.local.dtype)
        zeros = DistributedArray.cempty(cshape=(zerosize, ),
                                        dtype=N.local.dtype,
                                        comm=comm)
        zeros.local[...] = 0
        print(rank, cen.csize, N.cshape, zeros.cshape, N.cshape + zeros.cshape)
        N2 = DistributedArray.concat(N, zeros, localsize=cnsat.size)

        print('rank, shid, N : ', rank, shid[:10], N2.local[:10])
        print('rank, chid, csat, N : ', rank, chid[:10], cnsat[:10],
              N2.local[:10])
        print('rank, cen.csize, N.cshape : ', rank, cen.csize, N2.cshape)
        print('rank, cen.size, Nlocal.size : ', rank, cen.size, N2.local.size)

        print(rank, cnsat - N2.local)
        print(np.allclose(cnsat - N2.local, 0))

        #Do for mass