def bound(self, param_list: List[float]) -> float: theta = param_list[0] return evaluate_single_hop(foi=self.arr, s_net=self.ser, theta=theta, perform_param=self.perform_param)
def bound(self, param_list: List[float]) -> float: theta = param_list[0] if self.number_servers == 1: s_net: Service = Leftover(arr=self.arr_list[1], ser=self.ser_list[0]) elif self.number_servers == 2: leftover_service_list = [ Leftover(arr=self.arr_list[1], ser=self.ser_list[0]), AggregateList(arr_list=self.arr_list[2], p_list=[]), Deconvolve(arr=self.arr_list[1], ser=self.ser_list[0]) ] s_net: Service = Convolve(ser1=leftover_service_list[0], ser2=leftover_service_list[1], indep=False, p=param_list[1]) else: raise ValueError( "This number of servers {0} is not implemented yet".format( self.number_servers)) return evaluate_single_hop(foi=self.arr_list[0], s_net=s_net, theta=theta, perform_param=self.perform_param)
def new_delay(theta: float, delay: int, a_1: ArrivalDistribution, a_2: ArrivalDistribution, s_1: ConstantRate, s_2: TokenBucketConstant, s_3: ConstantRate) -> float: s_net: Service = Convolve(ser1=Leftover(arr=a_2, ser=s_1), ser2=Leftover(arr=s_2, ser=s_3), indep=True) return evaluate_single_hop(foi=a_1, s_net=s_net, theta=theta, perform_param=PerformParameter( perform_metric=PerformEnum.DELAY_PROB, value=delay))
def bound(self, param_list: List[float]) -> float: theta = param_list[0] s_net: Service = Leftover(arr=self.arr_list[self.number_servers + 1], ser=self.ser_list[self.number_servers]) for _i in range(self.number_servers, -1, -1): s_net = Convolve(ser1=s_net, ser2=self.ser_list[_i]) s_net = Leftover(arr=self.arr_list[_i + 1], ser=s_net) return evaluate_single_hop(foi=self.arr_list[0], s_net=s_net, theta=theta, perform_param=self.perform_param)
def bound(self, param_list: List[float]) -> float: theta = param_list[0] leftover_service_list: List[Service] = [ Leftover(arr=self.arr_list[i + 1], ser=self.ser_list[i]) for i in range(self.number_servers) ] s_net: Service = leftover_service_list[0] for i in range(1, self.number_servers): s_net = Convolve(s_net, leftover_service_list[i]) return evaluate_single_hop( foi=self.arr_list[0], s_net=s_net, theta=theta, perform_param=self.perform_param)
def bound(self, param_list: List[float]) -> float: theta = param_list[0] output_list: List[Arrival] = [ Deconvolve(arr=self.arr_list[i], ser=self.ser_list[i]) for i in range(1, self.number_servers) ] # we use i + 1, since i = 0 is the foi aggregated_cross: Arrival = AggregateList( arr_list=output_list, p_list=[]) s_net: Service = Leftover(arr=aggregated_cross, ser=self.ser_list[0]) return evaluate_single_hop( foi=self.arr_list[0], s_net=s_net, theta=theta, perform_param=self.perform_param)
def standard_delay(theta: float, p: float, delay: int, a_1: ArrivalDistribution, a_2: ArrivalDistribution, a_3: ArrivalDistribution, s_1: ConstantRate, s_2: ConstantRate, s_3: ConstantRate) -> float: f_3_output: Arrival = Deconvolve(arr=a_3, ser=Leftover(arr=Deconvolve(arr=a_2, ser=s_1), ser=s_2)) s_net: Service = Convolve(ser1=Leftover(arr=a_2, ser=s_1), ser2=Leftover(arr=f_3_output, ser=s_3), indep=False, p=p) return evaluate_single_hop(foi=a_1, s_net=s_net, theta=theta, perform_param=PerformParameter( perform_metric=PerformEnum.DELAY_PROB, value=delay))
def new_bound(self, param_l_list: List[float]) -> float: # len(param_list) = theta (1) + output bounds (len(arr_list)-1) if len(param_l_list) != len(self.arr_list): raise NameError("Check number of parameters") output_list: List[Arrival] = [ DeconvolvePower( arr=self.arr_list[i], ser=self.ser_list[i], l_power=param_l_list[i]) for i in range(1, self.number_servers) ] # we use i + 1, since i = 0 is the foi aggregated_cross: Arrival = AggregateList( arr_list=output_list, p_list=[]) s_net: Service = Leftover(arr=aggregated_cross, ser=self.ser_list[0]) return evaluate_single_hop( foi=self.arr_list[0], s_net=s_net, theta=param_l_list[0], perform_param=self.perform_param)