コード例 #1
0
def get_epidemic_si(graph, beta, perc_inf, infected_nodes):
    model_si = si.SIModel(graph)

    cfg_si = mc.Configuration()
    cfg_si.add_model_parameter("beta", beta)
    cfg_si.add_model_parameter("percentage_infected", perc_inf)
    cfg_si.add_model_parameter("Infected", infected_nodes)
    model_si.set_initial_status(cfg_si)

    iteration_si = model_si.iteration_bunch(50)
    trends_si = model_si.build_trends(iteration_si)
    viz_si = DiffusionTrend(model_si, trends_si)
    viz_si.plot()
コード例 #2
0
def get_epidemic_sir(graph, beta, gamma, perc_inf, infected_nodes):
    model_sir = sir.SIRModel(graph)

    cfg_sir = mc.Configuration()
    cfg_sir.add_model_parameter("beta", beta)  # infection
    cfg_sir.add_model_parameter("gamma", gamma)  # recovery
    cfg_sir.add_model_parameter("percentage_infected", perc_inf)
    cfg_sir.add_model_parameter("Infected", infected_nodes)
    model_sir.set_initial_status(cfg_sir)

    iterations_sir = model_sir.iteration_bunch(100, node_status=True)
    trends_sir = model_sir.build_trends(iterations_sir)
    viz_sir = DiffusionTrend(model_sir, trends_sir)
    viz_sir.plot()
コード例 #3
0
def get_epidemic_sis(graph, beta, lamb, perc_inf, infected_nodes):
    model_sis = sis.SISModel(graph)

    cfg_sis = mc.Configuration()
    cfg_sis.add_model_parameter("beta", beta)
    cfg_sis.add_model_parameter("lambda", lamb)
    cfg_sis.add_model_parameter("percentage_infected", perc_inf)
    cfg_sis.add_model_parameter("Infected", infected_nodes)
    model_sis.set_initial_status(cfg_sis)

    iteration_sis = model_sis.iteration_bunch(100)
    trends_sis = model_sis.build_trends(iteration_sis)
    viz_sis = DiffusionTrend(model_sis, trends_sis)
    viz_sis.plot()
コード例 #4
0
ファイル: test_mpl_viz.py プロジェクト: GiulioRossetti/ndlib
    def test_visualize(self):
        g = nx.erdos_renyi_graph(1000, 0.1)
        model = epd.SIRModel(g)
        config = mc.Configuration()
        config.add_model_parameter('beta', 0.001)
        config.add_model_parameter('gamma', 0.01)
        config.add_model_parameter("percentage_infected", 0.05)
        model.set_initial_status(config)
        iterations = model.iteration_bunch(200)
        trends = model.build_trends(iterations)

        # Visualization
        viz = DiffusionTrend(model, trends)
        viz.plot("diffusion.pdf")
        os.remove("diffusion.pdf")
コード例 #5
0
def get_epidemic_threshold(graph, perc_inf, threshold, infected_nodes):
    model_threshold = thresh.ThresholdModel(graph)

    cfg_threshold = mc.Configuration()
    cfg_threshold.add_model_parameter("percentage_infected", perc_inf)
    cfg_threshold.add_model_parameter("Infected", infected_nodes)

    for node in graph.nodes():
        cfg_threshold.add_node_configuration("threshold", node, threshold)
    model_threshold.set_initial_status(cfg_threshold)

    iteration_threshold = model_threshold.iteration_bunch(25)
    trends_threshold = model_threshold.build_trends(iteration_threshold)
    viz_threshold = DiffusionTrend(model_threshold, trends_threshold)
    viz_threshold.plot()
コード例 #6
0
    def test_visualize(self):
        g = nx.erdos_renyi_graph(1000, 0.1)
        model = sir.SIRModel(g)
        config = mc.Configuration()
        config.add_model_parameter('beta', 0.001)
        config.add_model_parameter('gamma', 0.01)
        config.add_model_parameter("percentage_infected", 0.05)
        model.set_initial_status(config)
        iterations = model.iteration_bunch(200)
        trends = model.build_trends(iterations)

        # Visualization
        viz = DiffusionTrend(model, trends)
        viz.plot("diffusion.pdf")
        os.remove("diffusion.pdf")
コード例 #7
0
def diffusion_trend(ind):
    iterations, iterations_mitigations = evaluate.evaluate_individual(
        toolbox.compile(ind),
        m=model,
        traveler_set=travelers,
        mvc_set=minimal_vertex_cover,
        vert_avg_dist=vertex_average_distance,
        number_vertex_shortest=number_shortest_paths,
        Page_Rank=page_rank,
        Cluster_Coeff=cluster_coef,
        avg_degree=average_degree,
        short_dist=shortest_distances,
        avg_dist=average_distance,
        total_iterations=ITERATIONS,
        measure_every=MEASURE_EVERY,
        mitigations_per_measure=MITIGATIONS_PER_MEASURE,
        rollover=ROLLOVER,
        use_all=USE_ALL)
    trends = model.build_trends(iterations)
    # Visualization
    viz = DiffusionTrend(model, trends)
    viz.plot()
    viz = DiffusionPrevalence(model, trends)
    viz.plot()
    return iterations, trends
コード例 #8
0
def visualize(model, trends, sub_dir):
    viz_img_name = model.get_name()
    for param, value in model.params['model'].items():
        viz_img_name = f'{viz_img_name};{param}({str(value).replace(".", ",")})'
    if not os.path.exists('./viz/'):
        os.mkdir('./viz/')
    if not os.path.exists(f'./viz/{sub_dir}'):
        os.mkdir(f'./viz/{sub_dir}')
    DiffusionTrend(model,
                   trends).plot(filename=f'./viz/{sub_dir}/{viz_img_name}.png')
コード例 #9
0
def sis_model(net, graph_name):
    print '\nSIS MODEL SIMULATION - ' + graph_name + ' network'

    for_comparison = dict()
    degrees = [d for n, d in net.degree]
    mean_k = sum(degrees)/len(degrees)

    for state in ['ENDEMIC', 'FREE']:
        print 'MODEL CONFIGURATION - ' + state + ' STATE'

        if state == 'ENDEMIC':
            beta = float(raw_input('INFECTION PROBABILITY: '))
            
            print 'MU HAS TO BE LESS THAN ' + str(beta*(mean_k+1))
            mu = float(raw_input('RECOVERY PROBABILITY: '))

            while mu >= (beta*(mean_k+1)):
                print 'ERROR! MU HAS TO BE LESS THAN ' + str(beta*(mean_k+1))
                mu = float(raw_input('RECOVERY PROBABILITY: '))
        else:
            print 'MU HAS TO BE GREATER THAN ' + str(beta*(mean_k+1))
            mu = float(raw_input('RECOVERY PROBABILITY: '))

            while mu <= beta*(mean_k+1):
                print 'ERROR! MU IS NOT GREATER THAN ' + str(beta*(mean_k+1))
                mu = float(raw_input('RECOVERY PROBABILITY: '))

        cfg = mc.Configuration()
        cfg.add_model_parameter('beta', beta)
        cfg.add_model_parameter('lambda', mu)
        cfg.add_model_parameter('percentage_infected',
                                float(raw_input('PERCENTAGE INFECTED: ')))
        model_sis = sis.SISModel(net)
        model_sis.set_initial_status(cfg)
        model_sis.name = str(graph_name)+"-"+state.lower()
        print model_sis.name

        iterations = model_sis.iteration_bunch(200)
        trends_sis = model_sis.build_trends(iterations)

        viz = DiffusionTrend(model_sis, trends_sis)
        viz.plot('../../report/images/spreading/sis/diffusion_' +
                 graph_name + '_' + state.lower() + '.pdf')
        for_comparison[state.lower() + '_state'] = [model_sis, trends_sis]

    viz = DiffusionTrendComparison([for_comparison['endemic_state'][0],
                                   for_comparison['free_state'][0]],
                                   [for_comparison['endemic_state'][1],
                                   for_comparison['free_state'][1]])
    viz.plot('../../report/images/spreading/sis/diffusion_' + graph_name +
             '_comparison.pdf')
コード例 #10
0
def simulate_spread(G, steps, threshold, infected_probability, simulation_beta,
                    simulation_gamma, simulation_alpha, output):
    infected_nodes = []
    exposed_nodes = [
        node[0] for node in G.nodes(data=True) if node[1]['flaws'] > threshold
    ]

    # Take 1 at random and the rest with probability
    idx = np.random.choice(list(range(len(exposed_nodes))),
                           size=1,
                           replace=False)[0]
    infected_nodes.append(exposed_nodes.pop(idx))

    infected_nodes_count = int(len(exposed_nodes) * infected_probability)
    if infected_nodes_count != 0:
        infected_idxs = np.random.choice(list(range(len(exposed_nodes))),
                                         infected_nodes_count)
        infected_nodes.extend(list(np.take(exposed_nodes, infected_idxs)))
        exposed_nodes = list(np.delete(exposed_nodes, infected_idxs))

    susceptible_nodes = [
        node for node_idx, node in enumerate(G.nodes())
        if node_idx not in [*exposed_nodes, *infected_nodes]
    ]

    # Create model
    model = ep.SEIRModel(G)

    # Create configuration
    cfg = mc.Configuration()

    # Infection probability.
    cfg.add_model_parameter('beta', simulation_beta)
    # Infected -> Remove probability
    cfg.add_model_parameter('gamma', simulation_gamma)
    # Latent period
    cfg.add_model_parameter('alpha', simulation_alpha)

    # Set both infected and exposed nodes.

    # cfg.add_model_parameter('fraction_infected', 0.01)
    cfg.add_model_initial_configuration("Susceptible", susceptible_nodes)
    cfg.add_model_initial_configuration("Exposed", exposed_nodes)
    cfg.add_model_initial_configuration("Infected", infected_nodes)

    # Set the configuration
    model.set_initial_status(cfg)

    # Run multiple models
    trends = multi_runs(model,
                        execution_number=10,
                        iteration_number=steps,
                        infection_sets=None,
                        nprocesses=5)

    dt = DiffusionTrend(model, trends)
    dt.plot(filename=os.path.join(output, 'diffusion_trend.png'))

    dp = DiffusionPrevalence(model, trends)
    dp.plot(filename=os.path.join(output, 'diffusion_prevalence.png'))

    # Other run to show
    infected_nodes = list()
    for _ in range(10):
        model.reset()
        iterations = model.iteration_bunch(steps)
        for iteration in iterations:
            for k, v in iteration['status'].items():
                if v == 3:
                    infected_nodes.append(k)

    return Counter(infected_nodes)
コード例 #11
0
ファイル: complex_networks.py プロジェクト: bwalkowi/isz
def plot_trend(model, iterations):
    trends = model.build_trends(iterations)
    viz = DiffusionTrend(model, trends)
    p = viz.plot()
    plt.show()
コード例 #12
0
def si_model(g, er_g, ba_g):
    print '\nSI MODEL SIMULATION'
    print 'MODEL CONFIGURATION'

    cfg = mc.Configuration()
    beta = float(raw_input('INFECTION RATE: '))
    cfg.add_model_parameter('beta', beta )
    cfg.add_model_parameter('percentage_infected',
                            float(raw_input('PERCENTAGE INFECTED: ')))
    for_comparison = dict()

    for network in [g, er_g, ba_g]:
        model_si = si.SIModel(network)
        model_si.set_initial_status(cfg)
        iterations = model_si.iteration_bunch(200)
        trends_si = model_si.build_trends(iterations)

        if network is g:
            print 'Original graph'
            model_si.name = 'G'
            viz = DiffusionTrend(model_si, trends_si)
            viz.plot('../../report/images/spreading/si/diffusion.pdf')
            viz = DiffusionPrevalence(model_si, trends_si)
            viz.plot('../../report/images/spreading/si/prevalence.pdf')
            for_comparison['original_si'] = [model_si, trends_si]
        elif network is er_g:
            print 'ER graph'
            model_si.name = 'ER'
            viz = DiffusionTrend(model_si, trends_si)
            viz.plot('../../report/images/spreading/si/diffusion_er.pdf')
            viz = DiffusionPrevalence(model_si, trends_si)
            viz.plot('../../report/images/spreading/si/prevalence_er.pdf')
            for_comparison['er_si'] = [model_si, trends_si]
        else:
            print 'BA graph'
            model_si.name = 'BA'
            viz = DiffusionTrend(model_si, trends_si)
            viz.plot('../../report/images/spreading/si/diffusion_ba.pdf')
            viz = DiffusionPrevalence(model_si, trends_si)
            viz.plot('../../report/images/spreading/si/prevalence_ba.pdf')
            for_comparison['ba_si'] = [model_si, trends_si]

    viz = DiffusionTrendComparison([
                            for_comparison['original_si'][0],
                            for_comparison['er_si'][0],
                            for_comparison['ba_si'][0]
                         ],
                         [
                            for_comparison['original_si'][1],
                            for_comparison['er_si'][1],
                            for_comparison['ba_si'][1]
                         ])
    viz.plot("../../report/images/spreading/si/trend_comparison_beta{}.pdf".format(beta))
コード例 #13
0
flight_data_col = ['Source', 'Destination']
flight_data_df = pd.read_csv('flight_data.csv',
                             names=flight_data_col,
                             skiprows=[0])
flight_data_df['Source'] = flight_data_df['Source'].astype("string")
flight_data_df['Destination'] = flight_data_df['Destination'].astype("string")

original_data = nx.from_pandas_edgelist(flight_data_df,
                                        source='Source',
                                        target='Destination',
                                        create_using=nx.DiGraph())

model = ep.ThresholdModel(original_data)

config = mc.Configuration()
config.add_model_parameter('fraction_infected', 0.10)

threshold = 0.25
for i in original_data.nodes():
    config.add_node_configuration("threshold", i, threshold)

model.set_initial_status(config)

iterations = model.iteration_bunch(200)

trends = model.build_trends(iterations)

viz = DiffusionTrend(model, trends)
viz.plot("cascade_results_1.png")
コード例 #14
0
config.add_model_parameter("gamma_t", 0.08)
config.add_model_parameter("gamma_f", 0.04)
config.add_model_parameter("omega_t", 0.001)
config.add_model_parameter("omega_f", 0.0015)

model.set_initial_status(config)
iterations = model.iteration_bunch(15)
json.dump(iterations, open("phase0.json", "w"))
trends = model.build_trends(iterations)
json.dump(trends, open("trends0.json", "w"))

viz = TotalCasesTrend(model, trends)
viz.plot(filename="total_cases0.pdf")

viz = DiffusionTrend(model, trends)
viz.normalized = False
viz.plot(filename="trend0.pdf", statuses=[
    'Infected', 'Exposed', "Dead"])

viz = RtTrend(model, trends)
viz.plot(filename="RTtrend0.pdf")


#### Phase 1: Lockdown + mobility allowed at municipality level for the ones not subject to lookdown (hospitals)
model.update_model_parameter("mobility", 0.005)
model.set_mobility_limits("municipality")

# Handling lethality/recovery rates
#model.update_model_parameter("gamma_t", 0.08)
#model.update_model_parameter("gamma_f", 0.1)
コード例 #15
0
        
        print('-----Plotting Results-----')
        #print(iterations)
        #print(trends)
        from ndlib.viz.mpl.DiffusionTrend import DiffusionTrend
        
        daydata = []
        fig = ()
        ax = ()
        for n in range(0, executions):
            if (trends[n]['trends']['node_count'][0][-1] != (N - initialinfect)):
                daydata.append(N-trends[n]['trends']['node_count'][0][-1])
        print(daydata)
        fig = plt.hist(daydata)
        stdev = np.std(daydata)
        mean = np.mean(daydata)
        
        plt.title("Infected at Day {}".format(iterations), fontsize = 24)
        plt.xlabel("Infected Population", fontsize = 24)
        plt.ylabel("Number of Simulations", fontsize = 24)
        plt.figtext(0.85, 0.80, 'Outbreaks: {:.0f}\nMean: {:.3f}\nStDev: {:.3f}'.format(len(daydata), mean, stdev), 
                fontsize = 24, bbox = dict(boxstyle = 'round', facecolor = 'white'))
        plt.tight_layout()
        plt.savefig("Histogram4/(HIST)Patient 0 Test: {} Days Test, {} Days Total, {} Initial.png".format(itercount, iterations, initialinfect))
        plt.clf()
        
        viz = DiffusionTrend(model, trends)
        name = ("Histogram4/(COUNT)Patient 0 Test: {} Days Test, {} Days Total, {} Initial.png".format(itercount, iterations, initialinfect))
        viz.plot(filename = name, percentile = 90, itercount = executions, timereq = total_time)
            
コード例 #16
0
def thr_model(g, er_g, ba_g):
    print '\nTHRESHOLD MODEL SIMULATION'
    print 'MODEL CONFIGURATION'

    cfg = mc.Configuration()
    cfg.add_model_parameter('percentage_infected',
                            float(raw_input('PERCENTAGE INFECTED: ')))
    thr = float(raw_input('THRESHOLD: '))

    for_comparison = dict()

    count = 0
    labels = ['G', 'ER', 'BA']
    for network in [g, er_g, ba_g]:
        model_thr = threshold.ThresholdModel(network)
        model_thr.name = labels[count]
        print model_thr.name
        count+=1
        
        for i in network.nodes():
            cfg.add_node_configuration("threshold", i, thr)

        model_thr.set_initial_status(cfg)
        iterations = model_thr.iteration_bunch(100)
        trends_thr = model_thr.build_trends(iterations)

        if network is g:
            viz = DiffusionTrend(model_thr, trends_thr)
            viz.plot("../../report/images/spreading/threshold/diffusion.pdf")
            for_comparison['original_thr'] = [model_thr, trends_thr]
        elif network is er_g:
            viz = DiffusionTrend(model_thr, trends_thr)
            viz.plot(
                    "../../report/images/spreading/threshold/diffusion_er.pdf")
            for_comparison['er_thr'] = [model_thr, trends_thr]
        else:
            viz = DiffusionTrend(model_thr, trends_thr)
            viz.plot(
                "../../report/images/spreading/threshold/diffusion_ba.pdf")
            for_comparison['ba_thr'] = [model_thr, trends_thr]

    viz = DiffusionTrendComparison([for_comparison['original_thr'][0],
                                   for_comparison['er_thr'][0],
                                   for_comparison['ba_thr'][0]], [
                                   for_comparison['original_thr'][1],
                                   for_comparison['er_thr'][1],
                                   for_comparison['ba_thr'][1]])
    viz.plot("../../report/images/spreading/threshold/trend_comparison.pdf")
コード例 #17
0
import networkx as nx
import matplotlib.pyplot as plt
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics as ep
from ndlib.viz.mpl.DiffusionTrend import DiffusionTrend

data = open('flight_data.csv', 'r')
graphType = nx.DiGraph()

g = nx.parse_edgelist(data,
                      delimiter=',',
                      create_using=graphType,
                      nodetype=str)

model = ep.SISModel(g)

#WE NEED TO FIGURE THE PARAMS OUT BELOW
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.01)
cfg.add_model_parameter('lambda', 0.005)
cfg.add_model_parameter("fraction_infected", 0.05)
model.set_initial_status(cfg)

iterations = model.iteration_bunch(200)

trends = model.build_trends(iterations)

viz = DiffusionTrend(model, trends)
viz.plot("diffusion.png")
コード例 #18
0
def sir_model(g, er_g, ba_g, g_stat):
    print '\nSIR MODEL SIMULATION WITH GAMMA ' + g_stat.upper() + ' THAN BETA'
    print 'MODEL CONFIGURATION'

    beta = float(raw_input('INFECTION PROBABILITY: '))
    gamma = float(raw_input('REMOVAL PROBABILITY: '))

    if g_stat == 'smaller':
        while gamma >= beta:
            print 'ERROR! GAMMA HAS TO BE SMALLER THAN BETA!'
            gamma = float(raw_input('REMOVAL PROBABILITY: '))
    else:
        while gamma <= beta:
            print 'ERROR! GAMMA HAS TO BE GREATER THAN BETA!'
            gamma = float(raw_input('REMOVAL PROBABILITY: '))

    cfg = mc.Configuration()
    cfg.add_model_parameter('beta', beta)
    cfg.add_model_parameter('gamma', gamma)
    cfg.add_model_parameter('percentage_infected',
                            float(raw_input('PERCENTAGE INFECTED: ')))

    for_comparison = dict()

    for network in [g, er_g, ba_g]:
        model_sir = sir.SIRModel(network)
        model_sir.set_initial_status(cfg)
        iterations = model_sir.iteration_bunch(200)
        trends_sir = model_sir.build_trends(iterations)

        if network is g:
            viz = DiffusionTrend(model_sir, trends_sir)
            viz.plot("../../report/images/spreading/sir/diffusion_"
                     + g_stat + ".pdf")
            for_comparison['original_sir'] = [model_sir, trends_sir]
        elif network is er_g:
            viz = DiffusionTrend(model_sir, trends_sir)
            viz.plot("../../report/images/spreading/sir/diffusion_er_"
                     + g_stat + ".pdf")
            for_comparison['er_sir'] = [model_sir, trends_sir]
        else:
            viz = DiffusionTrend(model_sir, trends_sir)
            viz.plot("../../report/images/spreading/sir/diffusion_ba_"
                     + g_stat + ".pdf")
            for_comparison['ba_sir'] = [model_sir, trends_sir]

    viz = DiffusionTrendComparison([
                            for_comparison['original_sir'][0],
                            for_comparison['er_sir'][0],
                            for_comparison['ba_sir'][0]
                         ],
                         [
                            for_comparison['original_sir'][1],
                            for_comparison['er_sir'][1],
                            for_comparison['ba_sir'][1]
                         ])
    viz.plot("../../report/images/spreading/sir/trend_comparison_"
             + g_stat + ".pdf")
コード例 #19
0
import matplotlib.pyplot as plt

import networkx as nx
import json
import warnings

n = 271269  # n nodes
p = 0.007286
w = [p * n for i in range(n)]  # w = p*n for all nodes
g = expected_degree_graph(w)  # configuration model
largest_subgraph1 = max(nx.connected_component_subgraphs(g), key=len)
pos = nx.spring_layout(largest_subgraph1, k=0.05)
nx.draw(largest_subgraph1, pos=pos, cmap=plt.cm.PiYG, edge_color="black", linewidths=0.3, node_size=60, alpha=0.6, with_labels=False)
nx.draw_networkx(largest_subgraph1, pos=pos)
plt.savefig('graphfinal2.png')
model = ep.SIRModel(largest_subgraph1)

cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.05) # infection rate
cfg.add_model_parameter('gamma', 0.05) # recovery rate
cfg.add_model_parameter("percentage_infected", 0.01)
model.set_initial_status(cfg)

iterations = model.iteration_bunch(200, node_status=True)
trends = model.build_trends(iterations)

viz = DiffusionTrend(model, trends)
viz.plot()
viz = DiffusionPrevalence(model, trends)
viz.plot()