def testChannelFitMats(self): self.loadBall() cm = CompartmentFitter(self.tree) cm.setCTree([(1, .5)]) # check if reversals are correct for key in set(cm.ctree[0].currents) - {'L'}: assert np.abs(cm.ctree[0].currents[key][1] - \ self.tree[1].currents[key][1]) < 1e-10 # fit the passive model cm.fitPassive(use_all_channels=False) fit_mats_cm_na = cm.evalChannel('Na_Ta', parallel=False) fit_mats_cm_k = cm.evalChannel('Kv3_1', parallel=False) fit_mats_control_na, fit_mats_control_k = self.reduceExplicit() # test whether potassium fit matrices agree for fm_cm, fm_control in zip(fit_mats_cm_k, fit_mats_control_k): assert np.allclose(np.sum(fm_cm[0]), fm_control[0][0, 0]) # feature matrices assert np.allclose(fm_cm[1], fm_control[1]) # target vectors # test whether sodium fit matrices agree for fm_cm, fm_control in zip(fit_mats_cm_na[4:], fit_mats_control_na): assert np.allclose(np.sum(fm_cm[0]), fm_control[0][0, 0]) # feature matrices assert np.allclose(fm_cm[1], fm_control[1]) # target vectors
def testTreeStructure(self): self.loadTTree() cm = CompartmentFitter(self.tree) # set of locations fit_locs1 = [(1,.5), (4,.5), (5,.5)] # no bifurcations fit_locs2 = [(1,.5), (4,.5), (5,.5), (8,.5)] # w bifurcation, should be added fit_locs3 = [(1,.5), (4,1.), (5,.5), (8,.5)] # w bifurcation, already added # test fit_locs1, no bifurcation are added # input paradigm 1 cm.setCTree(fit_locs1, extend_w_bifurc=True)
def testRecalcImpedanceMatrix(self, g_inp=np.linspace(0., 0.01, 20)): self.loadBall() fit_locs = [(1, .5)] cm = CompartmentFitter(self.tree) cm.setCTree(fit_locs) # test only leak # compute impedances explicitly greens_tree = cm.createTreeGF(channel_names=[]) greens_tree.setEEq(-75.) greens_tree.setImpedancesInTree() z_mat = greens_tree.calcImpedanceMatrix(fit_locs, explicit_method=False)[0] z_test = z_mat[:, :, None] / (1. + z_mat[:, :, None] * g_inp[None, None, :]) # compute impedances with compartmentfitter function z_calc = np.array([ \ cm.recalcImpedanceMatrix('fit locs', [g_i], \ channel_names=[] ) \ for g_i in g_inp \ ]) z_calc = np.swapaxes(z_calc, 0, 2) assert np.allclose(z_calc, z_test) # test with z based on all channels (passive) # compute impedances explicitly greens_tree = cm.createTreeGF( channel_names=list(cm.tree.channel_storage.keys())) greens_tree.setEEq(-75.) greens_tree.setImpedancesInTree() z_mat = greens_tree.calcImpedanceMatrix(fit_locs, explicit_method=False)[0] z_test = z_mat[:, :, None] / (1. + z_mat[:, :, None] * g_inp[None, None, :]) # compute impedances with compartmentfitter function z_calc = np.array([ \ cm.recalcImpedanceMatrix('fit locs', [g_i], \ channel_names=list(cm.tree.channel_storage.keys())) \ for g_i in g_inp \ ]) z_calc = np.swapaxes(z_calc, 0, 2) assert np.allclose(z_calc, z_test)
def testSynRescale(self, g_inp=np.linspace(0., 0.01, 20)): e_rev, v_eq = 0., -75. self.loadBallAndStick() fit_locs = [(4, .7)] syn_locs = [(4, 1.)] cm = CompartmentFitter(self.tree) cm.setCTree(fit_locs) # compute impedance matrix greens_tree = cm.createTreeGF(channel_names=[]) greens_tree.setEEq(-75.) greens_tree.setImpedancesInTree() z_mat = greens_tree.calcImpedanceMatrix(fit_locs + syn_locs)[0] # analytical synapse scale factors beta_calc = 1. / (1. + (z_mat[1, 1] - z_mat[0, 0]) * g_inp) beta_full = z_mat[0,1] / z_mat[0,0] * (e_rev - v_eq) / \ ((1. + (z_mat[1,1] - z_mat[0,0]) * g_inp ) * (e_rev - v_eq)) # synapse scale factors from compartment fitter beta_cm = np.array([cm.fitSynRescale(fit_locs, syn_locs, [0], [g_i], e_revs=[0.])[0] \ for g_i in g_inp]) assert np.allclose(beta_calc, beta_cm, atol=.020) assert np.allclose(beta_full, beta_cm, atol=.015)
def basalAPBackProp(recompute_ctree=False, recompute_biophys=False, axes=None, pshow=True): global STIM_PARAMS, D2S_BASAL, SLOCS global CMAP_MORPH rc, rb = recompute_ctree, recompute_biophys if axes is None: pl.figure(figsize=(7,5)) ax1, ax2, ax4, ax5 = pl.subplot(221), pl.subplot(223), pl.subplot(222), pl.subplot(224) divider = make_axes_locatable(ax1) ax3 = divider.append_axes("top", "30%", pad="10%") ax4, ax5 = myAx(ax4), myAx(ax5) pl.figure(figsize=(5,5)) gs = GridSpec(2,2) ax_morph, ax_red1, ax_red2 = pl.subplot(gs[:,0]), pl.subplot(gs[1,0]), pl.subplot(gs[1,1]) else: ax1, ax2, ax3 = axes['trace'] ax4, ax5 = axes['amp-delay'] ax_morph, ax_red1, ax_red2 = axes['morph'] pshow = False # create the full model phys_tree = getL23PyramidNaK() sim_tree = phys_tree.__copy__(new_tree=NeuronSimTree()) # distribute locations to measure backAPs on branches leafs_basal = [node for node in sim_tree.leafs if node.swc_type == 3] branches = [sim_tree.pathToRoot(leaf)[::-1] for leaf in leafs_basal] locslist = [sim_tree.distributeLocsOnNodes(D2S_BASAL, node_arg=branch) for branch in branches] branchlist = [b for ii, b in enumerate(branches) if len(locslist[ii]) == 3] locs = [locs for locs in locslist if len(locs) == 3][1] # do back prop sims amp_diffs_3loc, delay_diffs_3loc = np.zeros(3), np.zeros(3) amp_diffs_1loc, delay_diffs_1loc = np.zeros(3), np.zeros(3) amp_diffs_biop, delay_diffs_biop = np.zeros(3), np.zeros(3) # compartmentfitter object cfit = CompartmentFitter(phys_tree, name='basal_bAP', path='data/') # create reduced tree ctree, clocs = getCTree(cfit, [SLOCS[0]] + locs, 'data/ctree_basal_bAP_3loc', recompute_ctree=rc, recompute_biophys=rb) csimtree = createReducedNeuronModel(ctree) print(ctree) # run the simulation of he full tree res = runSim(sim_tree, locs, SLOCS[0], stim_params=STIM_PARAMS) calcAmpDelayWidth(res) amp_diffs_biop[:] = res['amp'][1:] delay_diffs_biop[:] = res['delay'][1:] # run the simulation of the reduced tree cres = runSim(csimtree, clocs[1:], clocs[0], stim_params=STIM_PARAMS) calcAmpDelayWidth(cres) amp_diffs_3loc[:] = cres['amp'][1:] delay_diffs_3loc[:] = cres['delay'][1:] # reduced models with one single dendritic site creslist = [] for jj, loc in enumerate(locs): # create reduced tree with all 1 single dendritic site locs ctree, clocs = getCTree(cfit, [SLOCS[0]] + [loc], 'data/ctree_basal_bAP_1loc%d'%jj, recompute_ctree=rc, recompute_biophys=False) csimtree = createReducedNeuronModel(ctree) print(ctree) # run the simulation of the reduced tree cres_ss = runSim(csimtree, [clocs[1]], clocs[0], stim_params=STIM_PARAMS) calcAmpDelayWidth(cres_ss) creslist.append(cres_ss) amp_diffs_1loc[jj] = cres_ss['amp'][1] delay_diffs_1loc[jj] = cres_ss['delay'][1] ylim = (-90., 60.) x_range = np.array([-3.,14]) xlim = (0., 12.) tp_full = res['t'][np.argmax(res['v_m'][0])] tp_3comp = cres['t'][np.argmax(cres['v_m'][0])] tp_1comp = creslist[2]['t'][np.argmax(creslist[2]['v_m'][0])] tlim_full = tp_full + x_range tlim_3comp = tp_3comp + x_range tlim_1comp = tp_1comp + x_range i0_full, i1_full = np.round(tlim_full / DT).astype(int) i0_3comp, i1_3comp = np.round(tlim_3comp / DT).astype(int) i0_1comp, i1_1comp = np.round(tlim_1comp / DT).astype(int) ax1.set_ylabel(r'soma') ax1.plot(res['t'][i0_full:i1_full] - tlim_full[0], res['v_m'][0][i0_full:i1_full], lw=lwidth, c='DarkGrey', label=r'full') ax1.plot(cres['t'][i0_3comp:i1_3comp] - tlim_3comp[0], cres['v_m'][0][i0_3comp:i1_3comp], ls='--', lw=1.6*lwidth, c=colours[0], label=r'3 comp') ax1.plot(creslist[2]['t'][i0_1comp:i1_1comp] - tlim_1comp[0], creslist[2]['v_m'][0][i0_1comp:i1_1comp], ls='-.', lw=1.6*lwidth, c=colours[1], label=r'1 comp') ax1.set_ylim(ylim) # ax1.set_xlim(xlim) drawScaleBars(ax1, b_offset=15) myLegend(ax1, add_frame=False, loc='center left', bbox_to_anchor=[0.35, 0.55], fontsize=ticksize, labelspacing=.8, handlelength=2., handletextpad=.2) ax2.set_ylabel(r'dend' + '\n($d_{soma} = 150$ $\mu$m)') ax2.plot(res['t'][i0_full:i1_full] - tlim_full[0], res['v_m'][3][i0_full:i1_full], lw=lwidth, c='DarkGrey', label=r'full') ax2.plot(cres['t'][i0_3comp:i1_3comp] - tlim_3comp[0], cres['v_m'][3][i0_3comp:i1_3comp], ls='--', lw=1.6*lwidth, c=colours[0], label=r'3 comp') ax2.plot(creslist[2]['t'][i0_1comp:i1_1comp] - tlim_1comp[0], creslist[2]['v_m'][1][i0_1comp:i1_1comp], ls='-.', lw=1.6*lwidth, c=colours[1], label=r'1 comp') imax = np.argmax(res['v_m'][3]) xp = res['t'][imax] ax2.annotate(r'$v_{amp}$', xy=(xlim[0], np.mean(ylim)), xytext=(xlim[0], np.mean(ylim)), fontsize=ticksize, ha='center', va='center', rotation=90.) ax2.annotate(r'$t_{delay}$', xy=(xp, ylim[1]), xytext=(xp, ylim[1]), fontsize=ticksize, ha='center', va='center', rotation=0.) ax2.set_ylim(ylim) ax2.set_xlim(xlim) drawScaleBars(ax2, xlabel=' ms', ylabel=' mV', b_offset=15) # myLegend(ax2, add_frame=False, ncol=2, fontsize=ticksize, # loc='upper center', bbox_to_anchor=[.5, -.1], # labelspacing=.6, handlelength=2., handletextpad=.2, columnspacing=.5) ax3.plot(res['t'][i0_full:i1_full] - tlim_full[0], -res['i_clamp'][0][i0_full:i1_full], lw=lwidth, c='r') ax3.set_yticks([0.,3.]) drawScaleBars(ax3, ylabel=' nA', b_offset=0) # ax3.set_xlim(xlim) # color the branches cnodes = [b for branch in branches for b in branch] if cnodes is None: plotargs = {'lw': lwidth/1.3, 'c': 'DarkGrey'} cs = {node.index: 0 for node in sim_tree} else: plotargs = {'lw': lwidth/1.3} cinds = [n.index for n in cnodes] cs = {node.index: 1 if node.index in cinds else 0 for node in sim_tree} # mark example locations plocs = [SLOCS[0]] + locs markers = [{'marker': 's', 'c': cfl[0], 'mec': 'k', 'ms': markersize}] + \ [{'marker': 's', 'c': cfl[1], 'mec': 'k', 'ms': markersize} for _ in plocs[1:]] # plot morphology sim_tree.plot2DMorphology(ax_morph, use_radius=False, plotargs=plotargs, cs=cs, cmap=CMAP_MORPH, marklocs=plocs, locargs=markers, lims_margin=0.01) # plot compartment tree schematic ctree_3l = cfit.setCTree([SLOCS[0]] + locs) ctree_3l = cfit.ctree ctree_1l = cfit.setCTree([SLOCS[0]] + locs[0:1]) ctree_1l = cfit.ctree labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2}} labelargs.update({ii: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2} for ii in range(1,len(plocs))}) ctree_3l.plotDendrogram(ax_red1, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs) labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2}, 1: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2}} ctree_1l.plotDendrogram(ax_red2, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs) ax_red1.set_xticks([]); ax_red1.set_yticks([]) ax_red1.set_xlabel(r'$\Delta x = 50$ $\mu$m', fontsize=ticksize,rotation=60) ax_red2.set_xticks([]); ax_red2.set_yticks([]) ax_red2.set_xlabel(r'$\Delta x = 150$ $\mu$m', fontsize=ticksize,rotation=60) xb = np.arange(3) bwidth = 1./4. xtls = [r'50', r'100', r'150'] ax4, ax5 = myAx(ax4), myAx(ax5) ax4.bar(xb-bwidth, amp_diffs_biop, width=bwidth, align='center', color='DarkGrey', edgecolor='k', label=r'full') ax4.bar(xb, amp_diffs_3loc, width=bwidth, align='center', color=colours[0], edgecolor='k', label=r'4 comp') ax4.bar((xb+bwidth)[-1:], amp_diffs_1loc[-1:], width=bwidth, align='center', color=colours[1], edgecolor='k', label=r'2 comp') ax4.set_ylabel(r'$v_{amp}$ (mV)') ax4.set_xticks(xb) ax4.set_xticklabels([]) ax4.set_ylim(50.,110.) ax4.set_yticks([50., 80.]) myLegend(ax4, add_frame=False, loc='lower center', bbox_to_anchor=[.5, 1.05], fontsize=ticksize, labelspacing=.1, handlelength=1., handletextpad=.2, columnspacing=.5) ax5.bar(xb-bwidth, delay_diffs_biop, width=bwidth, align='center', color='DarkGrey', edgecolor='k', label=r'full') ax5.bar(xb, delay_diffs_3loc, width=bwidth, align='center', color=colours[0], edgecolor='k', label=r'4 comp') ax5.bar((xb+bwidth)[-1:], delay_diffs_1loc[-1:], width=bwidth, align='center', color=colours[1], edgecolor='k', label=r'2 comp') ax5.set_ylabel(r'$t_{delay}$ (ms)') ax5.set_xticks(xb) ax5.set_xticklabels(xtls) ax5.set_xlabel(r'$d_{soma}$ ($\mu$m)') ax5.set_yticks([0., 0.5]) if pshow: pl.show()
def testPassiveFit(self): self.loadTTree() fit_locs = [(1, .5), (4, 1.), (5, .5), (8, .5)] # fit a tree directly from CompartmentTree greens_tree = self.tree.__copy__(new_tree=GreensTree()) greens_tree.setCompTree() freqs = np.array([0.]) greens_tree.setImpedance(freqs) z_mat = greens_tree.calcImpedanceMatrix(fit_locs)[0].real ctree = greens_tree.createCompartmentTree(fit_locs) ctree.computeGMC(z_mat) sov_tree = self.tree.__copy__(new_tree=SOVTree()) sov_tree.calcSOVEquations() alphas, phimat = sov_tree.getImportantModes(locarg=fit_locs) ctree.computeC(-alphas[0:1].real * 1e3, phimat[0:1, :].real) # fit a tree with compartment fitter cm = CompartmentFitter(self.tree) cm.setCTree(fit_locs) cm.fitPassive() cm.fitCapacitance() cm.fitEEq() # check whether both trees are the same self._checkPasCondProps(ctree, cm.ctree) self._checkPasCaProps(ctree, cm.ctree) self._checkEL(cm.ctree, -75.) # test whether all channels are used correctly for passive fit self.loadBall() fit_locs = [(1, .5)] # fit ball model with only leak greens_tree = self.tree.__copy__(new_tree=GreensTree()) greens_tree.channel_storage = {} for n in greens_tree: n.currents = {'L': n.currents['L']} greens_tree.setCompTree() freqs = np.array([0.]) greens_tree.setImpedance(freqs) z_mat = greens_tree.calcImpedanceMatrix(fit_locs)[0].real ctree_leak = greens_tree.createCompartmentTree(fit_locs) ctree_leak.computeGMC(z_mat) sov_tree = greens_tree.__copy__(new_tree=SOVTree()) sov_tree.calcSOVEquations() alphas, phimat = sov_tree.getImportantModes(locarg=fit_locs) ctree_leak.computeC(-alphas[0:1].real * 1e3, phimat[0:1, :].real) # make ball model with leak based on all channels tree = self.tree.__copy__() tree.asPassiveMembrane() greens_tree = tree.__copy__(new_tree=GreensTree()) greens_tree.setCompTree() freqs = np.array([0.]) greens_tree.setImpedance(freqs) z_mat = greens_tree.calcImpedanceMatrix(fit_locs)[0].real ctree_all = greens_tree.createCompartmentTree(fit_locs) ctree_all.computeGMC(z_mat) sov_tree = tree.__copy__(new_tree=SOVTree()) sov_tree.calcSOVEquations() alphas, phimat = sov_tree.getImportantModes(locarg=fit_locs) ctree_all.computeC(-alphas[0:1].real * 1e3, phimat[0:1, :].real) # new compartment fitter cm = CompartmentFitter(self.tree) cm.setCTree(fit_locs) # test fitting cm.fitPassive(use_all_channels=False) cm.fitCapacitance() cm.fitEEq() self._checkPasCondProps(ctree_leak, cm.ctree) self._checkPasCaProps(ctree_leak, cm.ctree) with pytest.raises(AssertionError): self._checkEL(cm.ctree, self.tree[1].currents['L'][1]) cm.fitPassive(use_all_channels=True) cm.fitCapacitance() cm.fitEEq() self._checkPasCondProps(ctree_all, cm.ctree) self._checkPasCaProps(ctree_all, cm.ctree) self._checkEL(cm.ctree, greens_tree[1].currents['L'][1]) with pytest.raises(AssertionError): self._checkEL(cm.ctree, self.tree[1].currents['L'][1]) with pytest.raises(AssertionError): self._checkPasCondProps(ctree_leak, ctree_all)
def testTreeStructure(self): self.loadTTree() cm = CompartmentFitter(self.tree) # set of locations fit_locs1 = [(1, .5), (4, .5), (5, .5)] # no bifurcations fit_locs2 = [(1, .5), (4, .5), (5, .5), (8, .5)] # w bifurcation, should be added fit_locs3 = [(1, .5), (4, 1.), (5, .5), (8, .5)] # w bifurcation, already added # test fit_locs1, no bifurcation are added # input paradigm 1 cm.setCTree(fit_locs1, extend_w_bifurc=True) fl1_a = cm.tree.getLocs('fit locs') cm.setCTree(fit_locs1, extend_w_bifurc=False) fl1_b = cm.tree.getLocs('fit locs') assert len(fl1_a) == len(fl1_b) for fla, flb in zip(fl1_a, fl1_b): assert fla == flb # input paradigm 2 cm.tree.storeLocs(fit_locs1, 'fl1') cm.setCTree('fl1', extend_w_bifurc=True) fl1_a = cm.tree.getLocs('fit locs') assert len(fl1_a) == len(fl1_b) for fla, flb in zip(fl1_a, fl1_b): assert fla == flb # test tree structure assert len(cm.ctree) == 3 for cn in cm.ctree: assert len(cn.child_nodes) <= 1 # test fit_locs2, a bifurcation should be added with pytest.warns(UserWarning): cm.setCTree(fit_locs2, extend_w_bifurc=False) fl2_b = cm.tree.getLocs('fit locs') cm.setCTree(fit_locs2, extend_w_bifurc=True) fl2_a = cm.tree.getLocs('fit locs') assert len(fl2_a) == len(fl2_b) + 1 for fla, flb in zip(fl2_a, fl2_b): assert fla == flb assert fl2_a[-1] == (4, 1.) # test tree structure assert len(cm.ctree) == 5 for cn in cm.ctree: assert len(cn.child_nodes) <= 1 if cn.loc_ind != 4 else \ len(cn.child_nodes) == 2 # test fit_locs2, no bifurcation should be added as it is already present cm.setCTree(fit_locs3, extend_w_bifurc=True) fl3 = cm.tree.getLocs('fit locs') for fl_, fl3 in zip(fit_locs3, fl3): assert fl_ == fl3 # test tree structure assert len(cm.ctree) == 4 for cn in cm.ctree: assert len(cn.child_nodes) <= 1 if cn.loc_ind != 1 else \ len(cn.child_nodes) == 2