コード例 #1
0
    def testChannelFitMats(self):
        self.loadBall()
        cm = CompartmentFitter(self.tree)
        cm.setCTree([(1, .5)])
        # check if reversals are correct
        for key in set(cm.ctree[0].currents) - {'L'}:
            assert np.abs(cm.ctree[0].currents[key][1] - \
                          self.tree[1].currents[key][1]) < 1e-10

        # fit the passive model
        cm.fitPassive(use_all_channels=False)

        fit_mats_cm_na = cm.evalChannel('Na_Ta', parallel=False)
        fit_mats_cm_k = cm.evalChannel('Kv3_1', parallel=False)
        fit_mats_control_na, fit_mats_control_k = self.reduceExplicit()
        # test whether potassium fit matrices agree
        for fm_cm, fm_control in zip(fit_mats_cm_k, fit_mats_control_k):
            assert np.allclose(np.sum(fm_cm[0]),
                               fm_control[0][0, 0])  # feature matrices
            assert np.allclose(fm_cm[1], fm_control[1])  # target vectors
        # test whether sodium fit matrices agree
        for fm_cm, fm_control in zip(fit_mats_cm_na[4:], fit_mats_control_na):
            assert np.allclose(np.sum(fm_cm[0]),
                               fm_control[0][0, 0])  # feature matrices
            assert np.allclose(fm_cm[1], fm_control[1])  # target vectors
コード例 #2
0
    def testTreeStructure(self):
        self.loadTTree()
        cm = CompartmentFitter(self.tree)
        # set of locations
        fit_locs1 = [(1,.5), (4,.5), (5,.5)] # no bifurcations
        fit_locs2 = [(1,.5), (4,.5), (5,.5), (8,.5)] # w bifurcation, should be added
        fit_locs3 = [(1,.5), (4,1.), (5,.5), (8,.5)] # w bifurcation, already added

        # test fit_locs1, no bifurcation are added
        # input paradigm 1
        cm.setCTree(fit_locs1, extend_w_bifurc=True)
コード例 #3
0
    def testRecalcImpedanceMatrix(self, g_inp=np.linspace(0., 0.01, 20)):
        self.loadBall()
        fit_locs = [(1, .5)]
        cm = CompartmentFitter(self.tree)
        cm.setCTree(fit_locs)

        # test only leak
        # compute impedances explicitly
        greens_tree = cm.createTreeGF(channel_names=[])
        greens_tree.setEEq(-75.)
        greens_tree.setImpedancesInTree()
        z_mat = greens_tree.calcImpedanceMatrix(fit_locs,
                                                explicit_method=False)[0]
        z_test = z_mat[:, :,
                       None] / (1. + z_mat[:, :, None] * g_inp[None, None, :])
        # compute impedances with compartmentfitter function
        z_calc = np.array([ \
                           cm.recalcImpedanceMatrix('fit locs', [g_i], \
                               channel_names=[]
                           ) \
                           for g_i in g_inp \
                          ])
        z_calc = np.swapaxes(z_calc, 0, 2)
        assert np.allclose(z_calc, z_test)

        # test with z based on all channels (passive)
        # compute impedances explicitly
        greens_tree = cm.createTreeGF(
            channel_names=list(cm.tree.channel_storage.keys()))
        greens_tree.setEEq(-75.)
        greens_tree.setImpedancesInTree()
        z_mat = greens_tree.calcImpedanceMatrix(fit_locs,
                                                explicit_method=False)[0]
        z_test = z_mat[:, :,
                       None] / (1. + z_mat[:, :, None] * g_inp[None, None, :])
        # compute impedances with compartmentfitter function
        z_calc = np.array([ \
                           cm.recalcImpedanceMatrix('fit locs', [g_i], \
                               channel_names=list(cm.tree.channel_storage.keys())) \
                           for g_i in g_inp \
                          ])
        z_calc = np.swapaxes(z_calc, 0, 2)
        assert np.allclose(z_calc, z_test)
コード例 #4
0
 def testSynRescale(self, g_inp=np.linspace(0., 0.01, 20)):
     e_rev, v_eq = 0., -75.
     self.loadBallAndStick()
     fit_locs = [(4, .7)]
     syn_locs = [(4, 1.)]
     cm = CompartmentFitter(self.tree)
     cm.setCTree(fit_locs)
     # compute impedance matrix
     greens_tree = cm.createTreeGF(channel_names=[])
     greens_tree.setEEq(-75.)
     greens_tree.setImpedancesInTree()
     z_mat = greens_tree.calcImpedanceMatrix(fit_locs + syn_locs)[0]
     # analytical synapse scale factors
     beta_calc = 1. / (1. + (z_mat[1, 1] - z_mat[0, 0]) * g_inp)
     beta_full = z_mat[0,1] / z_mat[0,0] * (e_rev - v_eq) / \
                 ((1. + (z_mat[1,1] - z_mat[0,0]) * g_inp ) * (e_rev - v_eq))
     # synapse scale factors from compartment fitter
     beta_cm = np.array([cm.fitSynRescale(fit_locs, syn_locs, [0], [g_i], e_revs=[0.])[0] \
                         for g_i in g_inp])
     assert np.allclose(beta_calc, beta_cm, atol=.020)
     assert np.allclose(beta_full, beta_cm, atol=.015)
コード例 #5
0
ファイル: basal_ap_backprop.py プロジェクト: pythonjam/NEAT
def basalAPBackProp(recompute_ctree=False, recompute_biophys=False, axes=None, pshow=True):
    global STIM_PARAMS, D2S_BASAL, SLOCS
    global CMAP_MORPH

    rc, rb  = recompute_ctree, recompute_biophys

    if axes is None:
        pl.figure(figsize=(7,5))
        ax1, ax2, ax4, ax5 = pl.subplot(221), pl.subplot(223), pl.subplot(222), pl.subplot(224)
        divider = make_axes_locatable(ax1)
        ax3 =  divider.append_axes("top", "30%", pad="10%")
        ax4, ax5 = myAx(ax4), myAx(ax5)
        pl.figure(figsize=(5,5))
        gs = GridSpec(2,2)
        ax_morph, ax_red1, ax_red2 = pl.subplot(gs[:,0]), pl.subplot(gs[1,0]), pl.subplot(gs[1,1])
    else:
        ax1, ax2, ax3 = axes['trace']
        ax4, ax5 = axes['amp-delay']
        ax_morph, ax_red1, ax_red2 = axes['morph']
        pshow = False

    # create the full model
    phys_tree = getL23PyramidNaK()
    sim_tree = phys_tree.__copy__(new_tree=NeuronSimTree())

    # distribute locations to measure backAPs on branches
    leafs_basal = [node for node in sim_tree.leafs if node.swc_type == 3]
    branches    = [sim_tree.pathToRoot(leaf)[::-1] for leaf in leafs_basal]
    locslist    = [sim_tree.distributeLocsOnNodes(D2S_BASAL, node_arg=branch) for branch in branches]
    branchlist  = [b for ii, b in enumerate(branches) if len(locslist[ii]) == 3]
    locs    = [locs for locs in locslist if len(locs) == 3][1]
    # do back prop sims
    amp_diffs_3loc, delay_diffs_3loc = np.zeros(3), np.zeros(3)
    amp_diffs_1loc, delay_diffs_1loc = np.zeros(3), np.zeros(3)
    amp_diffs_biop, delay_diffs_biop = np.zeros(3), np.zeros(3)

    # compartmentfitter object
    cfit = CompartmentFitter(phys_tree, name='basal_bAP', path='data/')

    # create reduced tree
    ctree, clocs = getCTree(cfit, [SLOCS[0]] + locs, 'data/ctree_basal_bAP_3loc',
                            recompute_ctree=rc, recompute_biophys=rb)
    csimtree = createReducedNeuronModel(ctree)
    print(ctree)

    # run the simulation of he full tree
    res = runSim(sim_tree, locs, SLOCS[0], stim_params=STIM_PARAMS)
    calcAmpDelayWidth(res)

    amp_diffs_biop[:] = res['amp'][1:]
    delay_diffs_biop[:] = res['delay'][1:]

    # run the simulation of the reduced tree
    cres = runSim(csimtree, clocs[1:], clocs[0], stim_params=STIM_PARAMS)
    calcAmpDelayWidth(cres)

    amp_diffs_3loc[:] = cres['amp'][1:]
    delay_diffs_3loc[:] = cres['delay'][1:]

    # reduced models with one single dendritic site
    creslist = []
    for jj, loc in enumerate(locs):
        # create reduced tree with all 1 single dendritic site locs
        ctree, clocs = getCTree(cfit, [SLOCS[0]] + [loc], 'data/ctree_basal_bAP_1loc%d'%jj,
                                recompute_ctree=rc, recompute_biophys=False)
        csimtree = createReducedNeuronModel(ctree)
        print(ctree)

        # run the simulation of the reduced tree
        cres_ss = runSim(csimtree, [clocs[1]], clocs[0], stim_params=STIM_PARAMS)
        calcAmpDelayWidth(cres_ss)
        creslist.append(cres_ss)

        amp_diffs_1loc[jj] = cres_ss['amp'][1]
        delay_diffs_1loc[jj] = cres_ss['delay'][1]


    ylim = (-90., 60.)
    x_range = np.array([-3.,14])
    xlim = (0., 12.)

    tp_full = res['t'][np.argmax(res['v_m'][0])]
    tp_3comp = cres['t'][np.argmax(cres['v_m'][0])]
    tp_1comp = creslist[2]['t'][np.argmax(creslist[2]['v_m'][0])]

    tlim_full = tp_full + x_range
    tlim_3comp = tp_3comp + x_range
    tlim_1comp = tp_1comp + x_range

    i0_full, i1_full = np.round(tlim_full / DT).astype(int)
    i0_3comp, i1_3comp = np.round(tlim_3comp / DT).astype(int)
    i0_1comp, i1_1comp = np.round(tlim_1comp / DT).astype(int)

    ax1.set_ylabel(r'soma')
    ax1.plot(res['t'][i0_full:i1_full] - tlim_full[0], res['v_m'][0][i0_full:i1_full],
             lw=lwidth, c='DarkGrey', label=r'full')
    ax1.plot(cres['t'][i0_3comp:i1_3comp] - tlim_3comp[0], cres['v_m'][0][i0_3comp:i1_3comp],
             ls='--', lw=1.6*lwidth, c=colours[0], label=r'3 comp')
    ax1.plot(creslist[2]['t'][i0_1comp:i1_1comp] - tlim_1comp[0], creslist[2]['v_m'][0][i0_1comp:i1_1comp],
             ls='-.', lw=1.6*lwidth, c=colours[1], label=r'1 comp')

    ax1.set_ylim(ylim)
    # ax1.set_xlim(xlim)
    drawScaleBars(ax1, b_offset=15)

    myLegend(ax1, add_frame=False, loc='center left', bbox_to_anchor=[0.35, 0.55], fontsize=ticksize,
                  labelspacing=.8, handlelength=2., handletextpad=.2)

    ax2.set_ylabel(r'dend' + '\n($d_{soma} = 150$ $\mu$m)')
    ax2.plot(res['t'][i0_full:i1_full] - tlim_full[0], res['v_m'][3][i0_full:i1_full],
             lw=lwidth, c='DarkGrey', label=r'full')
    ax2.plot(cres['t'][i0_3comp:i1_3comp] - tlim_3comp[0], cres['v_m'][3][i0_3comp:i1_3comp],
             ls='--', lw=1.6*lwidth, c=colours[0], label=r'3 comp')
    ax2.plot(creslist[2]['t'][i0_1comp:i1_1comp] - tlim_1comp[0], creslist[2]['v_m'][1][i0_1comp:i1_1comp],
             ls='-.', lw=1.6*lwidth, c=colours[1], label=r'1 comp')

    imax = np.argmax(res['v_m'][3])
    xp = res['t'][imax]

    ax2.annotate(r'$v_{amp}$',
                xy=(xlim[0], np.mean(ylim)), xytext=(xlim[0], np.mean(ylim)),
                fontsize=ticksize, ha='center', va='center', rotation=90.)
    ax2.annotate(r'$t_{delay}$',
                xy=(xp, ylim[1]), xytext=(xp, ylim[1]),
                fontsize=ticksize, ha='center', va='center', rotation=0.)

    ax2.set_ylim(ylim)
    ax2.set_xlim(xlim)

    drawScaleBars(ax2, xlabel=' ms', ylabel=' mV', b_offset=15)

    # myLegend(ax2, add_frame=False, ncol=2, fontsize=ticksize,
    #             loc='upper center', bbox_to_anchor=[.5, -.1],
    #             labelspacing=.6, handlelength=2., handletextpad=.2, columnspacing=.5)

    ax3.plot(res['t'][i0_full:i1_full] - tlim_full[0], -res['i_clamp'][0][i0_full:i1_full],
             lw=lwidth, c='r')
    ax3.set_yticks([0.,3.])
    drawScaleBars(ax3, ylabel=' nA', b_offset=0)
        # ax3.set_xlim(xlim)

    # color the branches
    cnodes = [b for branch in branches for b in branch]
    if cnodes is None:
        plotargs = {'lw': lwidth/1.3, 'c': 'DarkGrey'}
        cs = {node.index: 0 for node in sim_tree}
    else:
        plotargs = {'lw': lwidth/1.3}
        cinds = [n.index for n in cnodes]
        cs = {node.index: 1 if node.index in cinds else 0 for node in sim_tree}
    # mark example locations
    plocs = [SLOCS[0]] + locs
    markers = [{'marker': 's', 'c': cfl[0], 'mec': 'k', 'ms': markersize}] + \
              [{'marker': 's', 'c': cfl[1], 'mec': 'k', 'ms': markersize} for _ in plocs[1:]]
    # plot morphology
    sim_tree.plot2DMorphology(ax_morph, use_radius=False, plotargs=plotargs,
                                cs=cs, cmap=CMAP_MORPH,
                                marklocs=plocs, locargs=markers, lims_margin=0.01)

    # plot compartment tree schematic
    ctree_3l = cfit.setCTree([SLOCS[0]] + locs)
    ctree_3l = cfit.ctree
    ctree_1l = cfit.setCTree([SLOCS[0]] + locs[0:1])
    ctree_1l = cfit.ctree

    labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2}}
    labelargs.update({ii: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2} for ii in range(1,len(plocs))})
    ctree_3l.plotDendrogram(ax_red1, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs)

    labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2},
                 1: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2}}
    ctree_1l.plotDendrogram(ax_red2, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs)

    ax_red1.set_xticks([]); ax_red1.set_yticks([])
    ax_red1.set_xlabel(r'$\Delta x = 50$ $\mu$m', fontsize=ticksize,rotation=60)
    ax_red2.set_xticks([]); ax_red2.set_yticks([])
    ax_red2.set_xlabel(r'$\Delta x = 150$ $\mu$m', fontsize=ticksize,rotation=60)

    xb = np.arange(3)
    bwidth = 1./4.
    xtls = [r'50', r'100', r'150']

    ax4, ax5 = myAx(ax4), myAx(ax5)

    ax4.bar(xb-bwidth,        amp_diffs_biop,      width=bwidth, align='center', color='DarkGrey', edgecolor='k', label=r'full')
    ax4.bar(xb,               amp_diffs_3loc,      width=bwidth, align='center', color=colours[0], edgecolor='k', label=r'4 comp')
    ax4.bar((xb+bwidth)[-1:], amp_diffs_1loc[-1:], width=bwidth, align='center', color=colours[1], edgecolor='k', label=r'2 comp')

    ax4.set_ylabel(r'$v_{amp}$ (mV)')
    ax4.set_xticks(xb)
    ax4.set_xticklabels([])
    ax4.set_ylim(50.,110.)
    ax4.set_yticks([50., 80.])

    myLegend(ax4, add_frame=False, loc='lower center', bbox_to_anchor=[.5, 1.05], fontsize=ticksize,
                        labelspacing=.1, handlelength=1., handletextpad=.2, columnspacing=.5)

    ax5.bar(xb-bwidth,        delay_diffs_biop,      width=bwidth, align='center', color='DarkGrey', edgecolor='k', label=r'full')
    ax5.bar(xb,               delay_diffs_3loc,      width=bwidth, align='center', color=colours[0], edgecolor='k', label=r'4 comp')
    ax5.bar((xb+bwidth)[-1:], delay_diffs_1loc[-1:], width=bwidth, align='center', color=colours[1], edgecolor='k', label=r'2 comp')

    ax5.set_ylabel(r'$t_{delay}$ (ms)')
    ax5.set_xticks(xb)
    ax5.set_xticklabels(xtls)
    ax5.set_xlabel(r'$d_{soma}$ ($\mu$m)')
    ax5.set_yticks([0., 0.5])

    if pshow:
        pl.show()
コード例 #6
0
    def testPassiveFit(self):
        self.loadTTree()
        fit_locs = [(1, .5), (4, 1.), (5, .5), (8, .5)]

        # fit a tree directly from CompartmentTree
        greens_tree = self.tree.__copy__(new_tree=GreensTree())
        greens_tree.setCompTree()
        freqs = np.array([0.])
        greens_tree.setImpedance(freqs)
        z_mat = greens_tree.calcImpedanceMatrix(fit_locs)[0].real
        ctree = greens_tree.createCompartmentTree(fit_locs)
        ctree.computeGMC(z_mat)
        sov_tree = self.tree.__copy__(new_tree=SOVTree())
        sov_tree.calcSOVEquations()
        alphas, phimat = sov_tree.getImportantModes(locarg=fit_locs)
        ctree.computeC(-alphas[0:1].real * 1e3, phimat[0:1, :].real)

        # fit a tree with compartment fitter
        cm = CompartmentFitter(self.tree)
        cm.setCTree(fit_locs)
        cm.fitPassive()
        cm.fitCapacitance()
        cm.fitEEq()

        # check whether both trees are the same
        self._checkPasCondProps(ctree, cm.ctree)
        self._checkPasCaProps(ctree, cm.ctree)
        self._checkEL(cm.ctree, -75.)

        # test whether all channels are used correctly for passive fit
        self.loadBall()
        fit_locs = [(1, .5)]
        # fit ball model with only leak
        greens_tree = self.tree.__copy__(new_tree=GreensTree())
        greens_tree.channel_storage = {}
        for n in greens_tree:
            n.currents = {'L': n.currents['L']}
        greens_tree.setCompTree()
        freqs = np.array([0.])
        greens_tree.setImpedance(freqs)
        z_mat = greens_tree.calcImpedanceMatrix(fit_locs)[0].real
        ctree_leak = greens_tree.createCompartmentTree(fit_locs)
        ctree_leak.computeGMC(z_mat)
        sov_tree = greens_tree.__copy__(new_tree=SOVTree())
        sov_tree.calcSOVEquations()
        alphas, phimat = sov_tree.getImportantModes(locarg=fit_locs)
        ctree_leak.computeC(-alphas[0:1].real * 1e3, phimat[0:1, :].real)
        # make ball model with leak based on all channels
        tree = self.tree.__copy__()
        tree.asPassiveMembrane()
        greens_tree = tree.__copy__(new_tree=GreensTree())
        greens_tree.setCompTree()
        freqs = np.array([0.])
        greens_tree.setImpedance(freqs)
        z_mat = greens_tree.calcImpedanceMatrix(fit_locs)[0].real
        ctree_all = greens_tree.createCompartmentTree(fit_locs)
        ctree_all.computeGMC(z_mat)
        sov_tree = tree.__copy__(new_tree=SOVTree())
        sov_tree.calcSOVEquations()
        alphas, phimat = sov_tree.getImportantModes(locarg=fit_locs)
        ctree_all.computeC(-alphas[0:1].real * 1e3, phimat[0:1, :].real)

        # new compartment fitter
        cm = CompartmentFitter(self.tree)
        cm.setCTree(fit_locs)
        # test fitting
        cm.fitPassive(use_all_channels=False)
        cm.fitCapacitance()
        cm.fitEEq()
        self._checkPasCondProps(ctree_leak, cm.ctree)
        self._checkPasCaProps(ctree_leak, cm.ctree)
        with pytest.raises(AssertionError):
            self._checkEL(cm.ctree, self.tree[1].currents['L'][1])
        cm.fitPassive(use_all_channels=True)
        cm.fitCapacitance()
        cm.fitEEq()
        self._checkPasCondProps(ctree_all, cm.ctree)
        self._checkPasCaProps(ctree_all, cm.ctree)
        self._checkEL(cm.ctree, greens_tree[1].currents['L'][1])
        with pytest.raises(AssertionError):
            self._checkEL(cm.ctree, self.tree[1].currents['L'][1])
        with pytest.raises(AssertionError):
            self._checkPasCondProps(ctree_leak, ctree_all)
コード例 #7
0
    def testTreeStructure(self):
        self.loadTTree()
        cm = CompartmentFitter(self.tree)
        # set of locations
        fit_locs1 = [(1, .5), (4, .5), (5, .5)]  # no bifurcations
        fit_locs2 = [(1, .5), (4, .5), (5, .5),
                     (8, .5)]  # w bifurcation, should be added
        fit_locs3 = [(1, .5), (4, 1.), (5, .5),
                     (8, .5)]  # w bifurcation, already added

        # test fit_locs1, no bifurcation are added
        # input paradigm 1
        cm.setCTree(fit_locs1, extend_w_bifurc=True)
        fl1_a = cm.tree.getLocs('fit locs')
        cm.setCTree(fit_locs1, extend_w_bifurc=False)
        fl1_b = cm.tree.getLocs('fit locs')
        assert len(fl1_a) == len(fl1_b)
        for fla, flb in zip(fl1_a, fl1_b):
            assert fla == flb
        # input paradigm 2
        cm.tree.storeLocs(fit_locs1, 'fl1')
        cm.setCTree('fl1', extend_w_bifurc=True)
        fl1_a = cm.tree.getLocs('fit locs')
        assert len(fl1_a) == len(fl1_b)
        for fla, flb in zip(fl1_a, fl1_b):
            assert fla == flb
        # test tree structure
        assert len(cm.ctree) == 3
        for cn in cm.ctree:
            assert len(cn.child_nodes) <= 1

        # test fit_locs2, a bifurcation should be added
        with pytest.warns(UserWarning):
            cm.setCTree(fit_locs2, extend_w_bifurc=False)
        fl2_b = cm.tree.getLocs('fit locs')
        cm.setCTree(fit_locs2, extend_w_bifurc=True)
        fl2_a = cm.tree.getLocs('fit locs')
        assert len(fl2_a) == len(fl2_b) + 1
        for fla, flb in zip(fl2_a, fl2_b):
            assert fla == flb
        assert fl2_a[-1] == (4, 1.)
        # test tree structure
        assert len(cm.ctree) == 5
        for cn in cm.ctree:
            assert len(cn.child_nodes) <= 1 if cn.loc_ind != 4 else \
                   len(cn.child_nodes) == 2

        # test fit_locs2, no bifurcation should be added as it is already present
        cm.setCTree(fit_locs3, extend_w_bifurc=True)
        fl3 = cm.tree.getLocs('fit locs')
        for fl_, fl3 in zip(fit_locs3, fl3):
            assert fl_ == fl3
        # test tree structure
        assert len(cm.ctree) == 4
        for cn in cm.ctree:
            assert len(cn.child_nodes) <= 1 if cn.loc_ind != 1 else \
                   len(cn.child_nodes) == 2