コード例 #1
0
def process_collection(collection, metamap, splitter, parser, ptb2dep, lemmatizer, neg_detector, cuis, sec_title_patterns):
    for document in collection.documents:
        normalize_mimiccxr.normalize(document)
        section_split.split_document(document, sec_title_patterns)
        ssplit.ssplit(document, splitter)

    dner_mm.run_metamap_col(collection, metamap, cuis)

    for document in collection.documents:
        document = parse.parse(document, parser)
        document = ptb2ud.convert(document, ptb2dep, lemmatizer)
        document = negdetect.detect(document, neg_detector)
        cleanup.clean_sentences(document)

    return collection
コード例 #2
0
ファイル: load.py プロジェクト: jjalfaro9/chexpert-labeler
    def load(self):
        """Load and clean the reports."""
        collection = bioc.BioCCollection()
        reports = pd.read_csv(self.reports_path,
                              header=None,
                              names=[REPORTS])[REPORTS].tolist()

        for i, report in enumerate(reports):
            clean_report = self.clean(report)
            document = text2bioc.text2document(str(i), clean_report)

            if self.extract_impression:
                document = section_split.split_document(document)
                self.extract_impression_from_passages(document)

            split_document = self.splitter.split_doc(document)

            assert len(split_document.passages) == 1,\
                ('Each document must have a single passage, ' +
                 'the Impression section.')

            collection.add_document(split_document)

        self.reports = reports
        self.collection = collection
コード例 #3
0
    def prep_collection(self):
        """Apply splitter and create bioc collection"""
        collection = bioc.BioCCollection()
        for i, report in enumerate(self.reports):
            clean_report = self.clean(report)
            document = text2bioc.text2document(str(i), clean_report)

            if self.extract_impression:
                document = section_split.split_document(document)
                self.extract_impression_from_passages(document)

            split_document = self.splitter.split_doc(document)

            assert len(split_document.passages) == 1,\
                ('Each document must have a single passage, ' +
                 'the Impression section.')

            collection.add_document(split_document)
        self.collection = collection