コード例 #1
0
    def discrete_outcomes(self,
                          n_max: int = None,
                          astype: Type['Outcome'] = dict) -> List['Outcome']:
        """
        A discrete set of outcomes that spans the outcome space

        Args:
            n_max: The maximum number of outcomes to return. If None, all outcomes will be returned for discrete issues
            and *100* if any of the issues was continuous
            astype: A type to cast the resulting outcomes to.

        Returns:

            List[Outcome]: List of `n` or less outcomes

        """
        if self.outcomes is not None:
            return self.outcomes
        if self.__discrete_outcomes is None:
            if all(issue.is_discrete() for issue in self.issues):
                self.__discrete_outcomes = Issue.sample(
                    issues=self.issues,
                    n_outcomes=n_max,
                    astype=astype,
                    with_replacement=False,
                    fail_if_not_enough=False)
            else:
                self.__discrete_outcomes = Issue.sample(
                    issues=self.issues,
                    n_outcomes=n_max if n_max is not None else 100,
                    astype=astype,
                    with_replacement=False,
                    fail_if_not_enough=False)
        return self.__discrete_outcomes
コード例 #2
0
ファイル: mechanisms.py プロジェクト: egerson1996/negmas
    def random_outcomes(
        self, n: int = 1, astype: Type[Outcome] = None
    ) -> List["Outcome"]:
        """Returns random offers.

        Args:
              n: Number of outcomes to generate
              astype: The type to use for the generated outcomes

        Returns:
              A list of outcomes (in the type specified using `astype`) of at most n outcomes.

        Remarks:

                - If the number of outcomes `n` cannot be satisfied, a smaller number will be returned
                - Sampling is done without replacement (i.e. returned outcomes are unique).

        """
        if astype is None:
            astype = self.ami.outcome_type
        if self.ami.issues is None or len(self.ami.issues) == 0:
            raise ValueError("I do not have any issues to generate offers from")
        return Issue.sample(
            issues=self.issues,
            n_outcomes=n,
            astype=astype,
            with_replacement=False,
            fail_if_not_enough=False,
        )
コード例 #3
0
    def equiprobable_thresholds(cls,
                                n: int,
                                ufun: "UtilityFunction",
                                issues: List[Issue],
                                n_samples: int = 1000) -> List[float]:
        """
        Generates thresholds for the n given levels where levels are equally likely approximately

        Args:
            n: Number of scale levels (one side)
            ufun: The utility function to use
            issues: The issues to generate the thresholds for
            n_samples: The number of samples to use during the process

        """
        samples = list(
            Issue.sample(issues,
                         n_samples,
                         with_replacement=False,
                         fail_if_not_enough=False))
        n_samples = len(samples)
        diffs = []
        for i, first in enumerate(samples):
            n_diffs = min(10, n_samples - i - 1)
            for second in sample(samples[i + 1:], k=n_diffs):
                diffs.append(abs(ufun.compare_real(first, second)))
        diffs = np.array(diffs)
        hist, edges = np.histogram(diffs, bins=n + 1)
        return edges[1:-1].tolist()
コード例 #4
0
 def random_outcomes(self,
                     n: int = 1,
                     astype: Type[Outcome] = dict) -> List['Outcome']:
     """Returns random offers"""
     if self.info.issues is None or len(self.info.issues) == 0:
         raise ValueError(
             'I do not have any issues to generate offers from')
     return Issue.sample(issues=self.issues,
                         n_outcomes=n,
                         astype=astype,
                         with_replacement=False,
                         fail_if_not_enough=False)
コード例 #5
0
 def random(
     cls,
     issues: List["Issue"],
     reserved_value=(0.0, 1.0),
     normalized=True,
     max_n_outcomes: int = 10000,
 ):
     outcomes = (Issue.enumerate(issues)
                 if Issue.num_outcomes(issues) <= max_n_outcomes else
                 Issue.sample(issues,
                              max_n_outcomes,
                              with_replacement=False,
                              fail_if_not_enough=False))
     return UtilityFunction.generate_random(1, outcomes)[0]