コード例 #1
0
    def __init__(self, num_classes, class_weights=None):
        LossNM.__init__(self)
        if class_weights:
            class_weights = torch.FloatTensor(class_weights).to(self._device)

        self._criterion = nn.CrossEntropyLoss(weight=class_weights)
        self.num_classes = num_classes
コード例 #2
0
    def __init__(
        self,
        num_slots,
        slot_classes_loss_weights=None,
        intent_classes_loss_weights=None,
        intent_loss_weight=0.6,
    ):
        LossNM.__init__(self)
        self.num_slots = num_slots
        self.intent_loss_weight = intent_loss_weight
        self.slot_classes_loss_weights = slot_classes_loss_weights
        self.intent_classes_loss_weights = intent_classes_loss_weights

        # For weighted loss to tackle class imbalance
        if slot_classes_loss_weights:
            self.slot_classes_loss_weights = torch.FloatTensor(
                slot_classes_loss_weights).to(self._device)

        if intent_classes_loss_weights:
            self.intent_classes_loss_weights = torch.FloatTensor(
                intent_classes_loss_weights).to(self._device)

        self._criterion_intent = nn.CrossEntropyLoss(
            weight=self.intent_classes_loss_weights)
        self._criterion_slot = nn.CrossEntropyLoss(
            weight=self.slot_classes_loss_weights)
コード例 #3
0
    def __init__(self, pad_id=None, label_smoothing=0, predict_last_k=0):
        LossNM.__init__(self)

        self._loss_fn = SmoothedCrossEntropy(label_smoothing, predict_last_k)
        self._pad_id = pad_id
コード例 #4
0
 def __init__(self, num_inputs=2):
     # Store number of inputs/losses.
     self.num_losses = num_inputs
     LossNM.__init__(self)
コード例 #5
0
 def __init__(self):
     LossNM.__init__(self)
コード例 #6
0
 def __init__(self, label_smoothing=0.0):
     LossNM.__init__(self)
     self._criterion = SmoothedCrossEntropyLoss(label_smoothing)