def convert(rank, world_size, args): app_state = AppState() app_state.data_parallel_rank = 0 trainer = Trainer(gpus=args.tensor_model_parallel_size) # TODO: reach out to PTL For an API-safe local rank override trainer.accelerator.training_type_plugin._local_rank = rank if args.tensor_model_parallel_size is not None and args.tensor_model_parallel_size > 1: # inject model parallel rank checkpoint_path = os.path.join(args.checkpoint_folder, f'mp_rank_{rank:02d}', args.checkpoint_name) else: checkpoint_path = os.path.join(args.checkpoint_folder, args.checkpoint_name) if args.model_type == 'gpt': model = MegatronGPTModel.load_from_checkpoint( checkpoint_path, hparams_file=args.hparams_file, trainer=trainer) elif args.model_type == 'bert': model = MegatronBertModel.load_from_checkpoint( checkpoint_path, hparams_file=args.hparams_file, trainer=trainer) elif args.model_type == 't5': model = MegatronT5Model.load_from_checkpoint( checkpoint_path, hparams_file=args.hparams_file, trainer=trainer) model._save_restore_connector = NLPSaveRestoreConnector() if torch.distributed.is_initialized(): torch.distributed.barrier() model.save_to(args.nemo_file_path) logging.info(f'NeMo model saved to: {args.nemo_file_path}')
def main(cfg) -> None: logging.info("\n\n************** Experiment configuration ***********") logging.info(f'\n{OmegaConf.to_yaml(cfg)}') plugins = [NLPDDPPlugin(num_nodes=cfg.trainer.num_nodes)] trainer = Trainer(plugins=plugins, **cfg.trainer) exp_manager(trainer, cfg.exp_manager) model = MegatronGPTModel.restore_from(cfg.restore_from_path, cfg.model, trainer=trainer) # Init all new prompts for idx, tag in enumerate(cfg.model.new_prompt_tags): init_method = cfg.model.new_prompt_init_methods[idx] if init_method == "text": init_text = cfg.model.new_prompt_init_text[idx] model.init_prompt_from_text(tag, init_text) elif init_method == 'random': model.init_prompt_from_random(tag) else: logging.info( f'\n Soft prompt init method {init_method} is not recognized, please use text or random' ) logging.info(f'\nCurrent soft prompts include {model.get_prompt_table()}') trainer.fit(model)
def setup_method(self, test_method): trainer_config = { "devices": 1, "num_nodes": 1, "accelerator": "gpu", "logger": False, "precision": 16, } tensor_model_parallel_size = 1 pipeline_model_parallel_size = 1 model_file = '/home/TestData/nlp/megatron_gpt/125M/megatron_gpt.nemo' # trainer required for restoring model parallel models trainer = Trainer(plugins=NLPDDPPlugin(), **trainer_config) assert ( trainer_config["devices"] * trainer_config['num_nodes'] == tensor_model_parallel_size * pipeline_model_parallel_size ), "devices * num_nodes should equal tensor_model_parallel_size * pipeline_model_parallel_size" model = MegatronGPTModel.restore_from(restore_path=model_file, trainer=trainer) model.freeze() # has to turn off activations_checkpoint_method for inference try: model.model.language_model.encoder.activations_checkpoint_method = None except AttributeError: pass self.model = model
def __init__( self, cfg: DictConfig, trainer: Trainer = None, ): self.cfg = cfg self.data_prepared = False self.setup_tokenizer(cfg.tokenizer) super().__init__(cfg=cfg, trainer=trainer) if self.cfg.library == "huggingface": self.language_model = AutoModelWithLMHead.from_pretrained( cfg.language_model.pretrained_model_name) self.language_model.resize_token_embeddings( len(self.tokenizer.tokenizer)) elif self.cfg.library == "megatron": self.language_model = MegatronGPTModel.restore_from( cfg.language_model.lm_checkpoint, trainer=trainer) # 1 corresponds to intent slot; 0 corresponds to squad self.prompt_tags = [1, 0] if 'prompt_table' in dir( self.language_model) else [] if hasattr(self.language_model, 'prompt_table'): self.language_model.prompt_tuning_param_freeze_and_optimizer_setup( ) # Init all new prompts for idx, tag in enumerate(cfg.new_prompt_tags): self.prompt_tags.append(tag) init_method = cfg.new_prompt_init_methods[idx] if init_method == "text": init_text = cfg.new_prompt_init_text[idx] self.language_model.init_prompt_from_text(tag, init_text) elif init_method == 'random': self.language_model.init_prompt_from_random(tag) else: raise ValueError( f'\n Soft prompt init method {init_method} is not recognized, please use text or random' ) all_labels = list( self._train_dl.dataset.all_possible_labels.union( self._validation_dl.dataset.all_possible_labels, self._test_dl.dataset.all_possible_labels)) self.label_to_ids = collections.defaultdict(int) for i in range(len(all_labels)): self.label_to_ids[all_labels[i]] = i self.all_existing_labels = set(self.label_to_ids.keys()) self.token_to_words = {} self.classification_report = ClassificationReport( num_classes=len(self.label_to_ids) + 1, mode='micro', label_ids=self.label_to_ids, dist_sync_on_step=True) self.eval_mode = cfg.eval_mode self.cfg = cfg
def convert(local_rank, rank, world_size, args): app_state = AppState() app_state.data_parallel_rank = 0 num_nodes = world_size // args.gpus_per_node if args.bcp: trainer = Trainer(devices=args.gpus_per_node, num_nodes=num_nodes, accelerator='gpu', plugins=[TorchElasticEnvironment()]) else: trainer = Trainer(devices=args.gpus_per_node, num_nodes=num_nodes, accelerator='gpu') app_state.pipeline_model_parallel_size = args.pipeline_model_parallel_size app_state.tensor_model_parallel_size = args.tensor_model_parallel_size app_state.model_parallel_size = app_state.tensor_model_parallel_size * app_state.pipeline_model_parallel_size parallel_state.initialize_model_parallel( tensor_model_parallel_size_=app_state.tensor_model_parallel_size, pipeline_model_parallel_size_=app_state.pipeline_model_parallel_size, ) app_state.pipeline_model_parallel_rank = parallel_state.get_pipeline_model_parallel_rank( ) app_state.tensor_model_parallel_rank = parallel_state.get_tensor_model_parallel_rank( ) # inject model parallel rank checkpoint_path = inject_model_parallel_rank( os.path.join(args.checkpoint_folder, args.checkpoint_name)) logging.info( f'rank: {rank}, local_rank: {local_rank}, is loading checkpoint: {checkpoint_path} for tp_rank: {app_state.tensor_model_parallel_rank} and pp_rank: {app_state.pipeline_model_parallel_rank}' ) if args.model_type == 'gpt': model = MegatronGPTModel.load_from_checkpoint( checkpoint_path, hparams_file=args.hparams_file, trainer=trainer) elif args.model_type == 'bert': model = MegatronBertModel.load_from_checkpoint( checkpoint_path, hparams_file=args.hparams_file, trainer=trainer) elif args.model_type == 't5': model = MegatronT5Model.load_from_checkpoint( checkpoint_path, hparams_file=args.hparams_file, trainer=trainer) elif args.model_type == 'nmt': model = MegatronNMTModel.load_from_checkpoint( checkpoint_path, hparams_file=args.hparams_file, trainer=trainer) model._save_restore_connector = NLPSaveRestoreConnector() if torch.distributed.is_initialized(): torch.distributed.barrier() model.save_to(args.nemo_file_path) logging.info(f'NeMo model saved to: {args.nemo_file_path}')
def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.model = MegatronGPTModel.restore_from( self.register_artifact('language_model.nemo_file', cfg.language_model.get('nemo_file', None)), trainer=trainer, ) self.tokenizer = self.model.tokenizer self.float_type = self.model.model.language_model.encoder.layers[ 0].dtype if not cfg.use_lm_finetune: self.model.freeze() hidden_size = self.model.cfg.hidden_size self.embeddings = self.model.model.language_model.embedding.word_embeddings self.template = cfg.prompt_encoder.template self.prompt_encoder = PromptEncoder( template=cfg.prompt_encoder.template, hidden_size=hidden_size, lstm_dropout=cfg.prompt_encoder.dropout, num_layers=cfg.prompt_encoder.num_layers, ) self._reduced_loss_buffer = [] # load prompt encoder self.hidden_size = hidden_size self.tokenizer.add_special_tokens( {'additional_special_tokens': [cfg.pseudo_token]}) self.pseudo_token_id = self.tokenizer.token_to_id(cfg.pseudo_token) self.pad_token_id = self.tokenizer.pad_id if self.tokenizer.pad_id is not None else self.tokenizer.unk_id self.spell_length = sum(self.template) self.special_tokens = set([ self.tokenizer.eos_id, self.tokenizer.pad_id, self.tokenizer.sep_id, self.tokenizer.unk_id, self.tokenizer.bos_id, self.tokenizer.cls_id, ])
def main(cfg) -> None: logging.info("\n\n************** Experiment configuration ***********") logging.info(f'\n{OmegaConf.to_yaml(cfg)}') plugins = [NLPDDPPlugin(num_nodes=cfg.trainer.num_nodes)] if cfg.trainer.precision == 16: plugins.append( NLPNativeMixedPrecisionPlugin( init_scale=cfg.model.get('native_amp_init_scale', 2**32), growth_interval=cfg.model.get('native_amp_growth_interval', 1000), )) elif cfg.trainer.precision == 'bf16': plugins.append(NLPNativeBfloat16PrecisionPlugin()) else: plugins.append(NLPPrecisionPlugin()) if cfg.get('cluster_type', None) == 'BCP': plugins.append(TorchElasticEnvironment()) trainer = Trainer(plugins=plugins, **cfg.trainer) exp_manager(trainer, cfg.exp_manager) # update resume from checkpoint found by exp_manager resume_from_checkpoint = trainer.resume_from_checkpoint if resume_from_checkpoint is not None: mp_rank = compute_model_parallel_rank( trainer.local_rank, cfg.model.tensor_model_parallel_size) resume_from_checkpoint = Path(resume_from_checkpoint) resume_from_checkpoint = resume_from_checkpoint.parent.parent.joinpath( f'mp_rank_{mp_rank:02d}').joinpath(resume_from_checkpoint.name) resume_from_checkpoint = str(resume_from_checkpoint) logging.info( f'Resuming training from checkpoint: {resume_from_checkpoint}') trainer.checkpoint_connector = CheckpointConnector( trainer, resume_from_checkpoint=resume_from_checkpoint) # Override timer callback to a stateless one for idx, callback in enumerate(trainer.callbacks): if isinstance(callback, Timer): trainer.callbacks[idx] = StatelessTimer(cfg.trainer.max_time, ) model = MegatronGPTModel(cfg.model, trainer) trainer.fit(model)
def __init__( self, cfg: DictConfig, trainer: Trainer = None, ): self.cfg = cfg self.data_prepared = False self.setup_tokenizer(cfg.tokenizer) self.tokenizer.tokenizer.pad_token = self.tokenizer.tokenizer.eos_token self.epoch_number = 0 super().__init__(cfg=cfg, trainer=trainer, no_lm_init=True) if self.cfg.library == "huggingface": self.language_model = AutoModelWithLMHead.from_pretrained( cfg.language_model.pretrained_model_name) self.language_model.resize_token_embeddings( len(self.tokenizer.tokenizer)) if self.cfg.language_model.lm_checkpoint: self.language_model.load_state_dict( torch.load(self.cfg.language_model.lm_checkpoint)) elif self.cfg.library == "megatron": self.language_model = MegatronGPTModel.restore_from( cfg.language_model.lm_checkpoint, trainer=trainer) # 1 corresponds to intent slot; 0 corresponds to squad self.prompt_tags = [1, 0] if 'prompt_table' in dir( self.language_model) else [] if hasattr(self.language_model, 'prompt_table'): self.language_model.prompt_tuning_param_freeze_and_optimizer_setup( ) # Init all new prompts for idx, tag in enumerate(cfg.new_prompt_tags): self.prompt_tags.append(tag) init_method = cfg.new_prompt_init_methods[idx] if init_method == "text": init_text = cfg.new_prompt_init_text[idx] self.language_model.init_prompt_from_text(tag, init_text) elif init_method == 'random': self.language_model.init_prompt_from_random(tag) else: raise ValueError( f'\n Soft prompt init method {init_method} is not recognized, please use text or random' )
def __init__(self, cfg: DictConfig, trainer: Trainer = None): """Initializes the PTune TextClassifier model.""" super().__init__(cfg=cfg, trainer=trainer) initialize_model_parallel_for_nemo( world_size=trainer.world_size, global_rank=trainer.global_rank, local_rank=trainer.local_rank, tensor_model_parallel_size=cfg.get('tensor_model_parallel_size', 1), seed=cfg.get('seed', 1234), ) # shared params for dataset and data loaders self.dataset_cfg = cfg.dataset # tokenizer needs to get initialized before the super.__init__() # as dataloaders and datasets need it to process the data self.tokenizer = get_nmt_tokenizer( library=cfg.tokenizer.library, model_name=cfg.tokenizer.type, tokenizer_model=self.register_artifact("tokenizer.model", cfg.tokenizer.model), vocab_file=self.register_artifact("tokenizer.vocab_file", cfg.tokenizer.vocab_file), merges_file=self.register_artifact("tokenizer.merges_file", cfg.tokenizer.merge_file), ) self.class_weights = None self.model = MegatronGPTModel.restore_from( self.register_artifact('language_model.nemo_file', cfg.language_model.get('nemo_file', None)), trainer=trainer, ) if not cfg.use_lm_finetune: self.model.freeze() hidden_size = self.model.cfg.hidden_size # register the file containing the labels into the artifacts to get stored in the '.nemo' file later self.classes = cfg.dataset.classes self.embeddings = self.model.model.language_model.embedding.word_embeddings # set allowed vocab set self.vocab = self.tokenizer.tokenizer.get_vocab() # make sure classes are part of the vocab for k in cfg.dataset.classes: if token_wrapper(k) not in self.vocab: logging.error(f'class {k} is not part of the vocabulary. Please add it to your vocab') self.allowed_vocab_ids = set(self.vocab[token_wrapper(k)] for k in cfg.dataset.classes) # map from id to label self.allowed_vocab = {} self.label_ids = {} self.id_to_label = {} for i, k in enumerate(cfg.dataset.classes): self.allowed_vocab[self.vocab[token_wrapper(k)]] = i self.label_ids[k] = i self.id_to_label[i] = k self.template = cfg.prompt_encoder.template self.prompt_encoder = PromptEncoder( template=cfg.prompt_encoder.template, hidden_size=hidden_size, lstm_dropout=cfg.prompt_encoder.dropout, num_layers=cfg.prompt_encoder.num_layers, ) # load prompt encoder self.hidden_size = hidden_size self.tokenizer.add_special_tokens({'additional_special_tokens': [cfg.pseudo_token]}) self.pseudo_token_id = self.tokenizer.tokenizer.get_vocab()[cfg.pseudo_token] self.pad_token_id = ( self.tokenizer.tokenizer.pad_token_id if self.tokenizer.tokenizer.pad_token_id is not None else self.tokenizer.tokenizer.unk_token_id ) self.spell_length = sum(self.template)
def main(): parser = ArgumentParser() parser.add_argument("--model_file", type=str, default="", required=True, help="Pass path to model's .nemo file") parser.add_argument("--prompt", type=str, default="", required=True, help="Prompt for the model (a text to complete)") parser.add_argument("--tokens_to_generate", type=int, default="64", required=False, help="How many tokens to add to prompt") parser.add_argument( "--stop_after_sentence", type=bool, default="True", required=False, help= "True/False: whether to stop after full sentence has been generated.", ) parser.add_argument( "--tensor_model_parallel_size", type=int, default=1, required=True, ) parser.add_argument("--precision", default=32, help="PyTorch Lightning Trainer precision flag") args = parser.parse_args() # cast precision to int if 32 or 16 if args.precision in ["32", "16"]: args.precision = int(float(args.precision)) # trainer required for restoring model parallel models trainer = Trainer(plugins=NLPDDPPlugin(), gpus=args.tensor_model_parallel_size, precision=args.precision) app_state = AppState() if args.tensor_model_parallel_size is not None and args.tensor_model_parallel_size > 1: app_state.model_parallel_size = args.tensor_model_parallel_size app_state.model_parallel_rank = compute_model_parallel_rank( trainer.local_rank, app_state.model_parallel_size) model = MegatronGPTModel.restore_from(restore_path=args.model_file, trainer=trainer) model.freeze() request = { "prompt": args.prompt, "tokens_to_generate": args.tokens_to_generate, "stop_after_sentence": args.stop_after_sentence, } dataset = GPTRequestDataset(request, model.tokenizer) request_dl = DataLoader(dataset) response = trainer.predict(model, request_dl) print("***************************") print(response[0]['completion']['text']) print("***************************") logging.info( f"Generation stopped because: {response[0]['completion']['stop reason']}" )
def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.cfg = cfg # Load pretrained GPT model and tokenizer if cfg.get('language_model_path', None): self.frozen_model = MegatronGPTModel.restore_from( cfg.get('language_model_path'), trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(), ) # Freeze all GPT model weights for prompt-tuning/p-tuning self.frozen_model.freeze() self.tokenizer = self.frozen_model.tokenizer self.float_type = self.frozen_model.model.language_model.encoder.layers[ 0].dtype self.hidden_size = self.frozen_model.cfg.hidden_size self.word_embeddings = self.frozen_model.model.language_model.embedding.word_embeddings self.existing_tasks = list(self.cfg.get('existing_tasks', [])) self.new_tasks = list(self.cfg.get('new_tasks', [])) # Load templates for assigning virtual prompt token positions self.load_task_templates(self.cfg.task_templates) # Prompt table stores all task embeddings, p-tuning virtual prompts get added to the table after training self.prompt_table = PromptTable( existing_tasks=self.existing_tasks, task_templates=self.task_templates, task_id_num_to_name=self.task_id_num_to_name, hidden_size=self.hidden_size, ) self._prompt_table_key = VirtualPromptSource.PROMPT_TABLE.value self._prompt_encoder_key = VirtualPromptSource.PROMPT_ENCODER.value # Prepare pseudo token ids for virtual/virtual prompt tokens self.pseudo_tokens = get_pseudo_tokens(self.max_virtual_tokens) self.tokenizer.add_special_tokens( {'additional_special_tokens': self.pseudo_tokens}) self.pseudo_token_ids = self.tokenizer.tokens_to_ids( self.pseudo_tokens) self.pseudo_token_ids_start = self.pseudo_token_ids[0] self.pad_token_id = self.tokenizer.pad_id if self.tokenizer.pad_id is not None else self.tokenizer.unk_id self.virtual_prompt_style = VirtualPromptStyle( cfg.virtual_prompt_style) # Prompt tuning stores virtual prompts in the prompt table and tunes their weight directly if self.virtual_prompt_style in [ VirtualPromptStyle.PROMPT_TUNING, VirtualPromptStyle.INFERENCE ]: self.virtual_prompt_source = VirtualPromptSource.PROMPT_TABLE # P-Tuning uses an LSTM Encoder to produce virtual token embeddings elif self.virtual_prompt_style == VirtualPromptStyle.P_TUNING: self.virtual_prompt_source = VirtualPromptSource.PROMPT_ENCODER else: raise ValueError( f"\nvirtual prompt style '{cfg.virtual_prompt_style}' not recognized, please use one of 'prompt-tuning' or 'p-tuning'" ) self._reduced_loss_buffer = [] self._inference_config = None if self.trainer.precision == 32: self.autocast_dtype = torch.float elif self.trainer.precision == 16: self.autocast_dtype = torch.half elif self.trainer.precision == 'bf16': self.autocast_dtype = torch.bfloat16 else: raise ValueError('precision must be in [32, 16, "bf16"]') # make sure the default pytorch lightning gradient clipping in the basemodel self.grad_clip_pl_default = True # no support of amp o2 self.megatron_amp_o2 = False
def main(): parser = ArgumentParser() # args for loading the model, either from .nemo file or from PTL checkpoint parser.add_argument("--model_file", type=str, default="", required=False, help="Pass path to model's .nemo file") parser.add_argument( "--checkpoint_dir", type=str, default=None, required=False, help= "If not using a .nemo file. Path to PTL checkpoints saved during training. Ex: /raid/nemo_experiments/megatron_gpt/checkpoints", ) parser.add_argument( "--checkpoint_name", type=str, default=None, required=False, help= "If not using a .nemo file. Name of checkpoint to be used. Ex: megatron_gpt--val_loss=6.34-step=649-last.ckpt", ) parser.add_argument( "--hparams_file", type=str, default=None, required=False, help= "If not using a .nemo file. Path to config for restoring. It's created during training and may need to be modified during restore if restore environment is different than training. Ex: /raid/nemo_experiments/megatron_gpt/hparams.yaml", ) parser.add_argument("--tensor_model_parallel_size", type=int, default=1, required=False, help="Needed if not using a .nemo file") parser.add_argument( "--pipeline_model_parallel_size", type=int, default=1, required=False, help="Needed if not using a .nemo file", ) # PTL Trainer args parser.add_argument("--devices", default=1, type=int, help="PyTorch Lightning Trainer devices flag") parser.add_argument("--num_nodes", default=1, type=int, help="PyTorch Lightning Trainer num_nodes flag") parser.add_argument("--precision", default=16, help="PyTorch Lightning Trainer precision flag") # evaluation args parser.add_argument("--path_to_file", type=str, default="", required=False, help="Path to file with prompts (a text to complete)") parser.add_argument("--prompt", type=str, default="", required=False, help="Prompt for the model (a text to complete)") parser.add_argument("--use_soft_prompts", action="store_true", help="Use model's existing soft prompts") parser.add_argument("--prompt_tag", type=str, default="", required=False, help="Prompt tag string for task specific soft prompt") parser.add_argument("--tokens_to_generate", type=int, default="1", required=False, help="How many tokens to add to prompt") parser.add_argument( "--stop_after_sentence", type=bool, default="True", required=False, help= "True/False: whether to stop after full sentence has been generated.", ) parser.add_argument("--batch_size", default=1, type=int, required=False, help="Evaluation batch_size") parser.add_argument("--compute_logprobs", type=bool, default=False, required=False, help="Method for logprobs computation") args = parser.parse_args() assert ( args.devices * args.num_nodes == args.tensor_model_parallel_size * args.pipeline_model_parallel_size ), "devices * num_nodes should equal tensor_model_parallel_size * pipeline_model_parallel_size" if args.model_file and args.checkpoint_dir: raise ValueError( "Only one of model_file or checkpoint_dir should be used") # cast precision to int if 32 or 16 if args.precision in ["32", "16"]: args.precision = int(float(args.precision)) # trainer required for restoring model parallel models trainer = Trainer( plugins=[NLPDDPPlugin()], devices=args.devices, num_nodes=args.num_nodes, accelerator='gpu', precision=args.precision, ) if args.model_file: model = MegatronGPTModel.restore_from(restore_path=args.model_file, trainer=trainer) elif args.checkpoint_dir: app_state = AppState() if args.tensor_model_parallel_size > 1 or args.pipeline_model_parallel_size > 1: app_state.pipeline_model_parallel_size = args.pipeline_model_parallel_size app_state.tensor_model_parallel_size = args.tensor_model_parallel_size app_state.model_parallel_size = args.tensor_model_parallel_size * args.pipeline_model_parallel_size ( app_state.tensor_model_parallel_rank, app_state.pipeline_model_parallel_rank, app_state.model_parallel_size, _, ) = fake_initialize_model_parallel( world_size=app_state.model_parallel_size, rank=trainer.global_rank, tensor_model_parallel_size_=app_state. tensor_model_parallel_size, pipeline_model_parallel_size_=app_state. pipeline_model_parallel_size, ) # inject model parallel rank checkpoint_path = inject_model_parallel_rank( os.path.join(args.checkpoint_dir, args.checkpoint_name)) model = MegatronGPTModel.load_from_checkpoint( checkpoint_path, hparams_file=args.hparams_file, trainer=trainer) model.freeze() def pad_collate(batch): tokens, tokens_to_generate = batch[0]['data'], batch[0][ 'tokens_to_generate'] compute_logprobs = batch[0]['compute_logprobs'] lens = [len(token) for token in tokens] tokens_pad = pad_sequence(tokens, batch_first=False, padding_value=50256) data = [] if 'prompt_tags' in batch[0]: # Keep track of soft prompt tags prompt_tags = batch[0]['prompt_tags'] for token, lenn, prompt_tag in zip(tokens_pad.T, lens, prompt_tags): data.append((token, lenn, tokens_to_generate, compute_logprobs, prompt_tag)) else: for token, lenn in zip(tokens_pad.T, lens): data.append( (token, lenn, tokens_to_generate, compute_logprobs)) return data # defining type of request if args.path_to_file != "": request = [] prompts = open(args.path_to_file, 'r', encoding='utf-8') for prompt in prompts.readlines(): prompt = prompt.split('\n')[0] if args.use_soft_prompts and model.use_soft_prompts: prompt = json.loads(prompt) request.append(prompt) dataset = GPTRequestDataset(request, model.tokenizer, args.tokens_to_generate, args.compute_logprobs) request_dl = DataLoader(dataset=pad_collate(dataset), batch_size=int(args.batch_size)) else: if args.use_soft_prompts and model.use_soft_prompts: request = [{'prompt_tag': args.prompt_tag, 'text': args.prompt}] else: request = [args.prompt] dataset = GPTRequestDataset(request, model.tokenizer, args.tokens_to_generate, args.compute_logprobs) request_dl = DataLoader(dataset=pad_collate(dataset), batch_size=1) # For GPT models that have had soft prompt tuning but you don't want to use any soft prompts if not args.use_soft_prompts and model.use_soft_prompts: model.use_soft_prompts = False response = trainer.predict(model, request_dl) print("***************************") print(response) print("***************************") if args.prompt and not args.compute_logprobs: print(f'Prompt: {args.prompt}\n\nResponse: {response[0][0][0]}')
def __init__(self, cfg: DictConfig, trainer: Trainer): super().__init__(cfg, trainer) self.cfg = cfg # Load pretrained GPT model and tokenizer self.model = MegatronGPTModel.restore_from( self.register_artifact('language_model_path', cfg.get('language_model_path', None)), trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(), ) # Freeze all GPT model weights for prompt-tuning/p-tuning if not cfg.lm_finetune: self.model.freeze() self.tokenizer = self.model.tokenizer self.float_type = self.model.model.language_model.encoder.layers[ 0].dtype self.hidden_size = self.model.cfg.hidden_size self.word_embeddings = self.model.model.language_model.embedding.word_embeddings self.existing_tasks = list(self.cfg.get('existing_tasks', [])) self.new_tasks = list(self.cfg.get('new_tasks', [])) # Load templates for assigning virtual prompt token positions self.load_task_templates(self.cfg.task_templates) # Prompt table stores all task embeddings, p-tuning virtual prompts get added to the table after training self.prompt_table = PromptTable( existing_tasks=self.existing_tasks, task_templates=self.task_templates, task_id_num_to_name=self.task_id_num_to_name, hidden_size=self.hidden_size, ) # Prepare pseudo token ids for virtual/virtual prompt tokens self.pseudo_token_base = cfg.pseudo_token_base self.pseudo_tokens = [ self.pseudo_token_base + str(i) for i in range(self.max_virtual_tokens) ] self.tokenizer.add_special_tokens( {'additional_special_tokens': self.pseudo_tokens}) self.pseudo_token_ids = self.tokenizer.tokens_to_ids( self.pseudo_tokens) self.pseudo_token_ids_start = self.pseudo_token_ids[0] self.pad_token_id = self.tokenizer.pad_id if self.tokenizer.pad_id is not None else self.tokenizer.unk_id self.virtual_prompt_style = cfg.virtual_prompt_style.lower() # Prompt tuning stores virtual prompts in the prompt table and tunes their weight directly if self.virtual_prompt_style in ['prompt-tuning', 'inference']: self.virtual_prompt_source = 'prompt-table' # P-Tuning uses an LSTM Encoder to produce virtual token embeddings elif self.virtual_prompt_style == 'p-tuning': self.virtual_prompt_source = 'prompt-encoder' else: raise ValueError( f"\nvirtual prompt style '{cfg.virtual_prompt_type}' not recognized, please use one of 'prompt-tuning' or 'p-tuning'" ) self._reduced_loss_buffer = [] self._inference_config = None if self.trainer.precision == 32: self.autocast_dtype = torch.float elif self.trainer.precision == 16: self.autocast_dtype = torch.half elif self.trainer.precision == 'bf16': self.autocast_dtype = torch.bfloat16 else: raise ValueError('precision must be in [32, 16, "bf16"]')
def main(cfg) -> None: logging.info("\n\n************** Experiment configuration ***********") logging.info(f'\n{OmegaConf.to_yaml(cfg)}') megatron_amp_o2 = cfg.model.get('megatron_amp_O2', False) plugins = [ NLPDDPPlugin( no_ddp_communication_hook= True, # we don't use DDP for async grad allreduce gradient_as_bucket_view=cfg.model.gradient_as_bucket_view, find_unused_parameters=False, ) ] if cfg.trainer.precision in [16, 'bf16']: scaler = None if cfg.trainer.precision == 16: scaler = GradScaler( init_scale=cfg.model.get('native_amp_init_scale', 2**32), growth_interval=cfg.model.get('native_amp_growth_interval', 1000), hysteresis=cfg.model.get('hysteresis', 2), ) if megatron_amp_o2: plugins.append( MegatronHalfPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) else: plugins.append( PipelineMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) if cfg.get('cluster_type', None) == 'BCP': plugins.append(TorchElasticEnvironment()) trainer = Trainer(plugins=plugins, **cfg.trainer) exp_manager(trainer, cfg.exp_manager) # update resume from checkpoint found by exp_manager if cfg.model.resume_from_checkpoint is not None: resume_from_checkpoint = cfg.model.resume_from_checkpoint else: resume_from_checkpoint = trainer._checkpoint_connector.resume_from_checkpoint_fit_path logging.info( f'Resuming training from checkpoint: {resume_from_checkpoint}') trainer._checkpoint_connector = CheckpointConnector( trainer, resume_from_checkpoint=resume_from_checkpoint) # Override timer callback to a stateless one for idx, callback in enumerate(trainer.callbacks): if isinstance(callback, Timer): trainer.callbacks[idx] = StatelessTimer(cfg.trainer.max_time, ) # hydra interpolation does not work here as the interpolation key is lost when PTL saves hparams with open_dict(cfg): cfg.model.precision = cfg.trainer.precision model = MegatronGPTModel(cfg.model, trainer) trainer.fit(model)