コード例 #1
0
def main(cfg: DictConfig) -> None:
    torch.manual_seed(42)
    cfg = OmegaConf.merge(
        OmegaConf.structured(PunctuationCapitalizationConfig()), cfg)
    trainer = pl.Trainer(**cfg.trainer)
    exp_manager(trainer, cfg.get("exp_manager", None))
    if not cfg.do_training and not cfg.do_testing:
        raise ValueError(
            "At least one of config parameters `do_training` and `do_testing` has to `true`."
        )
    if cfg.do_training:
        if cfg.model.get('train_ds') is None:
            raise ValueError(
                '`model.train_ds` config section is required if `do_training` config item is `True`.'
            )
    if cfg.do_testing:
        if cfg.model.get('test_ds') is None:
            raise ValueError(
                '`model.test_ds` config section is required if `do_testing` config item is `True`.'
            )

    if not cfg.pretrained_model:
        logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')
        model = PunctuationCapitalizationModel(cfg.model, trainer=trainer)
    else:
        if os.path.exists(cfg.pretrained_model):
            model = PunctuationCapitalizationModel.restore_from(
                cfg.pretrained_model)
        elif cfg.pretrained_model in PunctuationCapitalizationModel.get_available_model_names(
        ):
            model = PunctuationCapitalizationModel.from_pretrained(
                cfg.pretrained_model)
        else:
            raise ValueError(
                f'Provide path to the pre-trained .nemo file or choose from '
                f'{PunctuationCapitalizationModel.list_available_models()}')
        model.update_config_after_restoring_from_checkpoint(
            class_labels=cfg.model.class_labels,
            common_dataset_parameters=cfg.model.common_dataset_parameters,
            train_ds=cfg.model.get('train_ds') if cfg.do_training else None,
            validation_ds=cfg.model.get('validation_ds')
            if cfg.do_training else None,
            test_ds=cfg.model.get('test_ds') if cfg.do_testing else None,
            optim=cfg.model.get('optim') if cfg.do_training else None,
        )
        model.set_trainer(trainer)
        if cfg.do_training:
            model.setup_training_data()
            model.setup_validation_data()
            model.setup_optimization()
        else:
            model.setup_test_data()
    if cfg.do_training:
        trainer.fit(model)
    if cfg.do_testing:
        trainer.test(model)
コード例 #2
0
def main(cfg: DictConfig) -> None:
    trainer = pl.Trainer(**cfg.trainer)
    exp_manager(trainer, cfg.get("exp_manager", None))
    do_training = True
    if not cfg.pretrained_model:
        logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')
        model = PunctuationCapitalizationModel(cfg.model, trainer=trainer)
    else:
        logging.info(f'Loading pretrained model {cfg.pretrained_model}')
        # TODO: Remove strict, when lightning has persistent parameter support for add_state()
        model = PunctuationCapitalizationModel.from_pretrained(
            cfg.pretrained_model, strict=False)
        data_dir = cfg.model.dataset.get('data_dir', None)
        if data_dir:
            # we can also do finetunining of the pretrained model but it will require
            # setting up train and validation Pytorch DataLoaders
            model.setup_training_data(data_dir=data_dir)
            # evaluation could be done on multiple files, use model.validation_ds.ds_items to specify multiple
            # data directories if needed
            model.setup_validation_data(data_dirs=data_dir)
            logging.info(f'Using config file of the pretrained model')
        else:
            do_training = False
            logging.info(
                f'Data dir should be specified for training/finetuning. '
                f'Using pretrained {cfg.pretrained_model} model weights and skipping finetuning.'
            )

    if do_training:
        trainer.fit(model)
        if cfg.model.nemo_path:
            model.save_to(cfg.model.nemo_path)

    logging.info(
        'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU '
        'and no DDP to obtain accurate results')
    gpu = 1 if cfg.trainer.gpus != 0 else 0
    trainer = pl.Trainer(gpus=gpu)
    model.set_trainer(trainer)

    # run an inference on a few examples
    queries = [
        'we bought four shirts one pen and a mug from the nvidia gear store in santa clara',
        'what can i do for you today',
        'how are you',
    ]
    inference_results = model.add_punctuation_capitalization(queries)

    for query, result in zip(queries, inference_results):
        logging.info(f'Query : {query}')
        logging.info(f'Result: {result.strip()}\n')
コード例 #3
0
def main(cfg: DictConfig) -> None:
    trainer = pl.Trainer(**cfg.trainer)
    exp_manager(trainer, cfg.get("exp_manager", None))
    do_training = True
    if not cfg.pretrained_model:
        logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')
        model = PunctuationCapitalizationModel(cfg.model, trainer=trainer)
    else:
        logging.info(f'Loading pretrained model {cfg.pretrained_model}')
        model = PunctuationCapitalizationModel.from_pretrained(cfg.pretrained_model)
        data_dir = cfg.model.dataset.get('data_dir', None)
        if data_dir:
            model.update_data_dir(data_dir)
            model.setup_training_data()
            model.setup_validation_data()
            logging.info(f'Using config file of the pretrained model')
        else:
            do_training = False
            logging.info(
                f'Data dir should be specified for training/finetuning. '
                f'Using pretrained {cfg.pretrained_model} model weights and skipping finetuning.'
            )

    if do_training:
        trainer.fit(model)
        if cfg.model.nemo_path:
            model.save_to(cfg.model.nemo_path)

    logging.info(
        'During evaluation/testing, it is currently advisable to construct a new Trainer with single GPU '
        'and no DDP to obtain accurate results'
    )
    gpu = 1 if cfg.trainer.gpus != 0 else 0
    trainer = pl.Trainer(gpus=gpu)
    model.set_trainer(trainer)

    # run an inference on a few examples
    queries = [
        'we bought four shirts one pen and a mug from the nvidia gear store in santa clara',
        'what can i do for you today',
        'how are you',
    ]
    inference_results = model.add_punctuation_capitalization(queries)

    for query, result in zip(queries, inference_results):
        logging.info(f'Query : {query}')
        logging.info(f'Result: {result.strip()}\n')
コード例 #4
0
def main(cfg: DictConfig) -> None:
    trainer = pl.Trainer(**cfg.trainer)
    exp_manager(trainer, cfg.get("exp_manager", None))

    if not cfg.pretrained_model:
        logging.info(f'Config: {OmegaConf.to_yaml(cfg)}')
        model = PunctuationCapitalizationModel(cfg.model, trainer=trainer)
    else:
        if os.path.exists(cfg.pretrained_model):
            model = PunctuationCapitalizationModel.restore_from(
                cfg.pretrained_model)
        elif cfg.pretrained_model in PunctuationCapitalizationModel.get_available_model_names(
        ):
            model = PunctuationCapitalizationModel.from_pretrained(
                cfg.pretrained_model)
        else:
            raise ValueError(
                f'Provide path to the pre-trained .nemo file or choose from {PunctuationCapitalizationModel.list_available_models()}'
            )

        data_dir = cfg.model.dataset.get('data_dir', None)
        if data_dir:
            if not os.path.exists(data_dir):
                raise ValueError(f'{data_dir} is not found at')

            # we can also do finetuning of the pretrained model but we would need to update the data dir
            model.update_data_dir(data_dir)
            # setup train and validation Pytorch DataLoaders
            model.setup_training_data()
            model.setup_validation_data()
            logging.info(f'Using config file of the pretrained model')
        else:
            raise ValueError(
                'Specify a valid dataset directory that contains test_ds.text_file and test_ds.labels_file \
                with "model.dataset.data_dir" argument')

    trainer.fit(model)

    if cfg.model.nemo_path:
        model.save_to(cfg.model.nemo_path)
        logging.info(f'The model was saved to {cfg.model.nemo_path}')