コード例 #1
0
class WaveGlowModel(GlowVocoder, Exportable):
    """Waveglow model used to convert betweeen spectrograms and audio"""

    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        super().__init__(cfg=cfg, trainer=trainer)

        schema = OmegaConf.structured(WaveglowConfig)
        # ModelPT ensures that cfg is a DictConfig, but do this second check in case ModelPT changes
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        elif not isinstance(cfg, DictConfig):
            raise ValueError(f"cfg was type: {type(cfg)}. Expected either a dict or a DictConfig")
        # Ensure passed cfg is compliant with schema
        OmegaConf.merge(cfg, schema)

        self.sigma = self._cfg.sigma
        self.audio_to_melspec_precessor = instantiate(self._cfg.preprocessor)
        self.waveglow = instantiate(self._cfg.waveglow)
        self.loss = WaveGlowLoss()

    @GlowVocoder.mode.setter
    def mode(self, new_mode):
        if new_mode == OperationMode.training:
            self.train()
        else:
            self.eval()
        self._mode = new_mode
        self.waveglow.mode = new_mode

    @property
    def input_types(self):
        return {
            "audio": NeuralType(('B', 'T'), AudioSignal()),
            "audio_len": NeuralType(('B'), LengthsType()),
            "run_inverse": NeuralType(optional=True),
        }

    @property
    def output_types(self):
        if self.mode == OperationMode.training or self.mode == OperationMode.validation:
            output_dict = {
                "pred_normal_dist": NeuralType(('B', 'flowgroup', 'T'), NormalDistributionSamplesType()),
                "log_s_list": [NeuralType(('B', 'flowgroup', 'T'), VoidType())],  # TODO: Figure out a good typing
                "log_det_W_list": [NeuralType(elements_type=LogDeterminantType())],
            }
            if self.mode == OperationMode.validation:
                output_dict["audio_pred"] = NeuralType(('B', 'T'), AudioSignal())
                output_dict["spec"] = NeuralType(('B', 'T', 'D'), MelSpectrogramType())
                output_dict["spec_len"] = NeuralType(('B'), LengthsType())
            return output_dict
        return {
            "audio_pred": NeuralType(('B', 'T'), AudioSignal()),
        }

    @typecheck()
    def forward(self, *, audio, audio_len, run_inverse=True):
        if self.mode != self.waveglow.mode:
            raise ValueError(
                f"WaveGlowModel's mode {self.mode} does not match WaveGlowModule's mode {self.waveglow.mode}"
            )
        spec, spec_len = self.audio_to_melspec_precessor(audio, audio_len)
        tensors = self.waveglow(spec=spec, audio=audio, run_inverse=run_inverse, sigma=self.sigma)
        if self.mode == OperationMode.training:
            return tensors[:-1]  # z, log_s_list, log_det_W_list
        elif self.mode == OperationMode.validation:
            z, log_s_list, log_det_W_list, audio_pred = tensors
            return z, log_s_list, log_det_W_list, audio_pred, spec, spec_len
        return tensors  # audio_pred

    @typecheck(
        input_types={
            "spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
            "sigma": NeuralType(optional=True),
            "denoise": NeuralType(optional=True),
            "denoiser_strength": NeuralType(optional=True),
        },
        output_types={"audio": NeuralType(('B', 'T'), AudioSignal())},
    )
    def convert_spectrogram_to_audio(
        self, spec: torch.Tensor, sigma: float = 1.0, denoise: bool = True, denoiser_strength: float = 0.01
    ) -> torch.Tensor:
        with self.nemo_infer():
            self.waveglow.remove_weightnorm()
            audio = self.waveglow(
                spec=spec.to(self.waveglow.upsample.weight.dtype), run_inverse=True, audio=None, sigma=sigma
            )
            if denoise:
                audio = self.denoise(audio, denoiser_strength)

        return audio

    def training_step(self, batch, batch_idx):
        self.mode = OperationMode.training
        audio, audio_len = batch
        z, log_s_list, log_det_W_list = self(audio=audio, audio_len=audio_len, run_inverse=False)

        loss = self.loss(z=z, log_s_list=log_s_list, log_det_W_list=log_det_W_list, sigma=self.sigma)
        output = {
            'loss': loss,
            'progress_bar': {'training_loss': loss},
            'log': {'loss': loss},
        }
        return output

    def validation_step(self, batch, batch_idx):
        self.mode = OperationMode.validation
        audio, audio_len = batch
        z, log_s_list, log_det_W_list, audio_pred, spec, spec_len = self(
            audio=audio, audio_len=audio_len, run_inverse=(batch_idx == 0)
        )
        loss = self.loss(z=z, log_s_list=log_s_list, log_det_W_list=log_det_W_list, sigma=self.sigma)
        return {
            "val_loss": loss,
            "audio_pred": audio_pred,
            "mel_target": spec,
            "mel_len": spec_len,
        }

    def validation_epoch_end(self, outputs):
        if self.logger is not None and self.logger.experiment is not None:
            tb_logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        tb_logger = logger.experiment
                        break
            waveglow_log_to_tb_func(
                tb_logger,
                outputs[0].values(),
                self.global_step,
                tag="eval",
                mel_fb=self.audio_to_melspec_precessor.fb,
            )
        avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        self.log('val_loss', avg_loss)

    def __setup_dataloader_from_config(self, cfg, shuffle_should_be: bool = True, name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True"
                )
                with open_dict(cfg["dataloader_params"]):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(f"The {name} dataloader for {self} has shuffle set to False!!!")
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(cfg, shuffle_should_be=False, name="validation")

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="WaveGlow-22050Hz",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemottsmodels/versions/1.0.0a5/files/WaveGlow-22050Hz.nemo",
            description="This model is trained on LJSpeech sampled at 22050Hz, and can be used as an universal vocoder.",
            class_=cls,
        )
        list_of_models.append(model)
        return list_of_models

    @property
    def input_module(self):
        return self.waveglow

    @property
    def output_module(self):
        return self.waveglow

    def _prepare_for_export(self):
        self.update_bias_spect()
        self.waveglow._prepare_for_export()

    def forward_for_export(self, spec, z=None):
        return self.waveglow(spec, z)
コード例 #2
0
 def output_types(self):
     return {"mel_spec": NeuralType(('B', 'T', 'C'), MelSpectrogramType())}
コード例 #3
0
 def output_types(self):
     return {
         "out": NeuralType(('B', 'T', 'D'), EncodedRepresentation()),
         "mask": NeuralType(('B', 'T', 'D'), MaskType()),
     }
コード例 #4
0
ファイル: fastpitch.py プロジェクト: Mirzyaaliii/NeMo
 def input_types(self):
     return {
         "enc": NeuralType(('B', 'T', 'D'), EncodedRepresentation()),
         "enc_mask": NeuralType(('B', 'T', 1), TokenDurationType()),
     }
コード例 #5
0
 def input_types(self):
     return {
         "audio": NeuralType(('B', 'T'), AudioSignal()),
         "audio_len": NeuralType(('B'), LengthsType()),
     }
コード例 #6
0
ファイル: fastpitchloss.py プロジェクト: jfsantos/NeMo
 def input_types(self):
     return {
         "spect_predicted": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
         "spect_tgt": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
     }
コード例 #7
0
ファイル: fastpitchloss.py プロジェクト: jfsantos/NeMo
 def output_types(self):
     return {
         "loss": NeuralType(elements_type=LossType()),
     }
コード例 #8
0
ファイル: mixer_tts.py プロジェクト: quuhua911/NeMo
class MixerTTSModel(SpectrogramGenerator, Exportable):
    """Mixer-TTS and Mixer-TTS-X models (https://arxiv.org/abs/2110.03584) that is used to generate mel spectrogram from text."""
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        # Convert to Hydra 1.0 compatible DictConfig
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)

        # Setup normalizer
        self.normalizer = None
        self.text_normalizer_call = None
        self.text_normalizer_call_kwargs = {}
        self._setup_normalizer(cfg)

        # Setup tokenizer
        self.tokenizer = None
        self._setup_tokenizer(cfg)
        assert self.tokenizer is not None

        num_tokens = len(self.tokenizer.tokens)
        self.tokenizer_pad = self.tokenizer.pad
        self.tokenizer_unk = self.tokenizer.oov

        super().__init__(cfg=cfg, trainer=trainer)

        self.pitch_loss_scale = cfg.pitch_loss_scale
        self.durs_loss_scale = cfg.durs_loss_scale
        self.mel_loss_scale = cfg.mel_loss_scale

        self.aligner = instantiate(cfg.alignment_module)
        self.forward_sum_loss = ForwardSumLoss()
        self.bin_loss = BinLoss()
        self.add_bin_loss = False
        self.bin_loss_scale = 0.0
        self.bin_loss_start_ratio = cfg.bin_loss_start_ratio
        self.bin_loss_warmup_epochs = cfg.bin_loss_warmup_epochs

        self.cond_on_lm_embeddings = cfg.get("cond_on_lm_embeddings", False)

        if self.cond_on_lm_embeddings:
            self.lm_padding_value = (self._train_dl.dataset.lm_padding_value
                                     if self._train_dl is not None else
                                     self._get_lm_padding_value(cfg.lm_model))
            self.lm_embeddings = self._get_lm_embeddings(cfg.lm_model)
            self.lm_embeddings.weight.requires_grad = False

            self.self_attention_module = instantiate(
                cfg.self_attention_module,
                n_lm_tokens_channels=self.lm_embeddings.weight.shape[1])

        self.encoder = instantiate(cfg.encoder,
                                   num_tokens=num_tokens,
                                   padding_idx=self.tokenizer_pad)
        self.symbol_emb = self.encoder.to_embed

        self.duration_predictor = instantiate(cfg.duration_predictor)

        self.pitch_mean, self.pitch_std = float(cfg.pitch_mean), float(
            cfg.pitch_std)
        self.pitch_predictor = instantiate(cfg.pitch_predictor)
        self.pitch_emb = instantiate(cfg.pitch_emb)

        self.preprocessor = instantiate(cfg.preprocessor)

        self.decoder = instantiate(cfg.decoder)
        self.proj = nn.Linear(self.decoder.d_model, cfg.n_mel_channels)

    def _setup_normalizer(self, cfg):
        if "text_normalizer" in cfg:
            normalizer_kwargs = {}

            if "whitelist" in cfg.text_normalizer:
                normalizer_kwargs["whitelist"] = self.register_artifact(
                    'text_normalizer.whitelist', cfg.text_normalizer.whitelist)

            self.normalizer = instantiate(cfg.text_normalizer,
                                          **normalizer_kwargs)
            self.text_normalizer_call = self.normalizer.normalize
            if "text_normalizer_call_kwargs" in cfg:
                self.text_normalizer_call_kwargs = cfg.text_normalizer_call_kwargs

    def _setup_tokenizer(self, cfg):
        text_tokenizer_kwargs = {}
        if "g2p" in cfg.text_tokenizer:
            g2p_kwargs = {}

            if "phoneme_dict" in cfg.text_tokenizer.g2p:
                g2p_kwargs["phoneme_dict"] = self.register_artifact(
                    'text_tokenizer.g2p.phoneme_dict',
                    cfg.text_tokenizer.g2p.phoneme_dict,
                )

            if "heteronyms" in cfg.text_tokenizer.g2p:
                g2p_kwargs["heteronyms"] = self.register_artifact(
                    'text_tokenizer.g2p.heteronyms',
                    cfg.text_tokenizer.g2p.heteronyms,
                )

            text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p,
                                                       **g2p_kwargs)

        self.tokenizer = instantiate(cfg.text_tokenizer,
                                     **text_tokenizer_kwargs)

    def _get_lm_model_tokenizer(self, lm_model="albert"):
        if getattr(self, "_lm_model_tokenizer", None) is not None:
            return self._lm_model_tokenizer

        if self._train_dl is not None and self._train_dl.dataset is not None:
            self._lm_model_tokenizer = self._train_dl.dataset.lm_model_tokenizer

        if lm_model == "albert":
            self._lm_model_tokenizer = AlbertTokenizer.from_pretrained(
                'albert-base-v2')
        else:
            raise NotImplementedError(
                f"{lm_model} lm model is not supported. Only albert is supported at this moment."
            )

        return self._lm_model_tokenizer

    def _get_lm_embeddings(self, lm_model="albert"):
        if lm_model == "albert":
            return transformers.AlbertModel.from_pretrained(
                'albert-base-v2').embeddings.word_embeddings
        else:
            raise NotImplementedError(
                f"{lm_model} lm model is not supported. Only albert is supported at this moment."
            )

    def _get_lm_padding_value(self, lm_model="albert"):
        if lm_model == "albert":
            return transformers.AlbertTokenizer.from_pretrained(
                'albert-base-v2')._convert_token_to_id('<pad>')
        else:
            raise NotImplementedError(
                f"{lm_model} lm model is not supported. Only albert is supported at this moment."
            )

    def _metrics(
        self,
        true_durs,
        true_text_len,
        pred_durs,
        true_pitch,
        pred_pitch,
        true_spect=None,
        pred_spect=None,
        true_spect_len=None,
        attn_logprob=None,
        attn_soft=None,
        attn_hard=None,
        attn_hard_dur=None,
    ):
        text_mask = get_mask_from_lengths(true_text_len)
        mel_mask = get_mask_from_lengths(true_spect_len)
        loss = 0.0

        # Dur loss and metrics
        durs_loss = F.mse_loss(pred_durs, (true_durs + 1).float().log(),
                               reduction='none')
        durs_loss = durs_loss * text_mask.float()
        durs_loss = durs_loss.sum() / text_mask.sum()

        durs_pred = pred_durs.exp() - 1
        durs_pred = torch.clamp_min(durs_pred, min=0)
        durs_pred = durs_pred.round().long()

        acc = ((true_durs == durs_pred) *
               text_mask).sum().float() / text_mask.sum() * 100
        acc_dist_1 = (((true_durs - durs_pred).abs() <= 1) *
                      text_mask).sum().float() / text_mask.sum() * 100
        acc_dist_3 = (((true_durs - durs_pred).abs() <= 3) *
                      text_mask).sum().float() / text_mask.sum() * 100

        pred_spect = pred_spect.transpose(1, 2)

        # Mel loss
        mel_loss = F.mse_loss(pred_spect, true_spect,
                              reduction='none').mean(dim=-2)
        mel_loss = mel_loss * mel_mask.float()
        mel_loss = mel_loss.sum() / mel_mask.sum()

        loss = loss + self.durs_loss_scale * durs_loss + self.mel_loss_scale * mel_loss

        # Aligner loss
        bin_loss, ctc_loss = None, None
        ctc_loss = self.forward_sum_loss(attn_logprob=attn_logprob,
                                         in_lens=true_text_len,
                                         out_lens=true_spect_len)
        loss = loss + ctc_loss
        if self.add_bin_loss:
            bin_loss = self.bin_loss(hard_attention=attn_hard,
                                     soft_attention=attn_soft)
            loss = loss + self.bin_loss_scale * bin_loss
        true_avg_pitch = average_pitch(true_pitch.unsqueeze(1),
                                       attn_hard_dur).squeeze(1)

        # Pitch loss
        pitch_loss = F.mse_loss(pred_pitch, true_avg_pitch,
                                reduction='none')  # noqa
        pitch_loss = (pitch_loss * text_mask).sum() / text_mask.sum()

        loss = loss + self.pitch_loss_scale * pitch_loss

        return loss, durs_loss, acc, acc_dist_1, acc_dist_3, pitch_loss, mel_loss, ctc_loss, bin_loss

    @torch.jit.unused
    def run_aligner(self, text, text_len, text_mask, spect, spect_len,
                    attn_prior):
        text_emb = self.symbol_emb(text)
        attn_soft, attn_logprob = self.aligner(
            spect,
            text_emb.permute(0, 2, 1),
            mask=text_mask == 0,
            attn_prior=attn_prior,
        )
        attn_hard = binarize_attention_parallel(attn_soft, text_len, spect_len)
        attn_hard_dur = attn_hard.sum(2)[:, 0, :]
        assert torch.all(torch.eq(attn_hard_dur.sum(dim=1), spect_len))
        return attn_soft, attn_logprob, attn_hard, attn_hard_dur

    @typecheck(
        input_types={
            "text":
            NeuralType(('B', 'T_text'), TokenIndex()),
            "text_len":
            NeuralType(('B', ), LengthsType()),
            "pitch":
            NeuralType(('B', 'T_audio'), RegressionValuesType(),
                       optional=True),
            "spect":
            NeuralType(('B', 'D', 'T_spec'),
                       MelSpectrogramType(),
                       optional=True),
            "spect_len":
            NeuralType(('B', ), LengthsType(), optional=True),
            "attn_prior":
            NeuralType(('B', 'T_spec', 'T_text'), ProbsType(), optional=True),
            "lm_tokens":
            NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
        },
        output_types={
            "pred_spect":
            NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
            "durs_predicted":
            NeuralType(('B', 'T_text'), TokenDurationType()),
            "log_durs_predicted":
            NeuralType(('B', 'T_text'), TokenLogDurationType()),
            "pitch_predicted":
            NeuralType(('B', 'T_text'), RegressionValuesType()),
            "attn_soft":
            NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()),
            "attn_logprob":
            NeuralType(('B', 'S', 'T_spec', 'T_text'), LogprobsType()),
            "attn_hard":
            NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()),
            "attn_hard_dur":
            NeuralType(('B', 'T_text'), TokenDurationType()),
        },
    )
    def forward(self,
                text,
                text_len,
                pitch=None,
                spect=None,
                spect_len=None,
                attn_prior=None,
                lm_tokens=None):
        if self.training:
            assert pitch is not None

        text_mask = get_mask_from_lengths(text_len).unsqueeze(2)

        enc_out, enc_mask = self.encoder(text, text_mask)

        # Aligner
        attn_soft, attn_logprob, attn_hard, attn_hard_dur = None, None, None, None
        if spect is not None:
            attn_soft, attn_logprob, attn_hard, attn_hard_dur = self.run_aligner(
                text, text_len, text_mask, spect, spect_len, attn_prior)

        if self.cond_on_lm_embeddings:
            lm_emb = self.lm_embeddings(lm_tokens)
            lm_features = self.self_attention_module(
                enc_out,
                lm_emb,
                lm_emb,
                q_mask=enc_mask.squeeze(2),
                kv_mask=lm_tokens != self.lm_padding_value)

        # Duration predictor
        log_durs_predicted = self.duration_predictor(enc_out, enc_mask)
        durs_predicted = torch.clamp(log_durs_predicted.exp() - 1, 0)

        # Pitch predictor
        pitch_predicted = self.pitch_predictor(enc_out, enc_mask)

        # Avg pitch, add pitch_emb
        if not self.training:
            if pitch is not None:
                pitch = average_pitch(pitch.unsqueeze(1),
                                      attn_hard_dur).squeeze(1)
                pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
            else:
                pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1))
        else:
            pitch = average_pitch(pitch.unsqueeze(1), attn_hard_dur).squeeze(1)
            pitch_emb = self.pitch_emb(pitch.unsqueeze(1))

        enc_out = enc_out + pitch_emb.transpose(1, 2)

        if self.cond_on_lm_embeddings:
            enc_out = enc_out + lm_features

        # Regulate length
        len_regulated_enc_out, dec_lens = regulate_len(attn_hard_dur, enc_out)

        dec_out, dec_lens = self.decoder(
            len_regulated_enc_out,
            get_mask_from_lengths(dec_lens).unsqueeze(2))
        pred_spect = self.proj(dec_out)

        return (
            pred_spect,
            durs_predicted,
            log_durs_predicted,
            pitch_predicted,
            attn_soft,
            attn_logprob,
            attn_hard,
            attn_hard_dur,
        )

    def infer(
        self,
        text,
        text_len=None,
        text_mask=None,
        spect=None,
        spect_len=None,
        attn_prior=None,
        use_gt_durs=False,
        lm_tokens=None,
        pitch=None,
    ):
        if text_mask is None:
            text_mask = get_mask_from_lengths(text_len).unsqueeze(2)

        enc_out, enc_mask = self.encoder(text, text_mask)

        # Aligner
        attn_hard_dur = None
        if use_gt_durs:
            attn_soft, attn_logprob, attn_hard, attn_hard_dur = self.run_aligner(
                text, text_len, text_mask, spect, spect_len, attn_prior)

        if self.cond_on_lm_embeddings:
            lm_emb = self.lm_embeddings(lm_tokens)
            lm_features = self.self_attention_module(
                enc_out,
                lm_emb,
                lm_emb,
                q_mask=enc_mask.squeeze(2),
                kv_mask=lm_tokens != self.lm_padding_value)

        # Duration predictor
        log_durs_predicted = self.duration_predictor(enc_out, enc_mask)
        durs_predicted = torch.clamp(log_durs_predicted.exp() - 1, 0)

        # Avg pitch, pitch predictor
        if use_gt_durs and pitch is not None:
            pitch = average_pitch(pitch.unsqueeze(1), attn_hard_dur).squeeze(1)
            pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
        else:
            pitch_predicted = self.pitch_predictor(enc_out, enc_mask)
            pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1))

        # Add pitch emb
        enc_out = enc_out + pitch_emb.transpose(1, 2)

        if self.cond_on_lm_embeddings:
            enc_out = enc_out + lm_features

        if use_gt_durs:
            if attn_hard_dur is not None:
                len_regulated_enc_out, dec_lens = regulate_len(
                    attn_hard_dur, enc_out)
            else:
                raise NotImplementedError
        else:
            len_regulated_enc_out, dec_lens = regulate_len(
                durs_predicted, enc_out)

        dec_out, _ = self.decoder(len_regulated_enc_out,
                                  get_mask_from_lengths(dec_lens).unsqueeze(2))
        pred_spect = self.proj(dec_out)

        return pred_spect

    def on_train_epoch_start(self):
        bin_loss_start_epoch = np.ceil(self.bin_loss_start_ratio *
                                       self._trainer.max_epochs)

        # Add bin loss when current_epoch >= bin_start_epoch
        if not self.add_bin_loss and self.current_epoch >= bin_loss_start_epoch:
            logging.info(
                f"Using hard attentions after epoch: {self.current_epoch}")
            self.add_bin_loss = True

        if self.add_bin_loss:
            self.bin_loss_scale = min(
                (self.current_epoch - bin_loss_start_epoch) /
                self.bin_loss_warmup_epochs, 1.0)

    def training_step(self, batch, batch_idx):
        attn_prior, lm_tokens = None, None
        if self.cond_on_lm_embeddings:
            audio, audio_len, text, text_len, attn_prior, pitch, _, lm_tokens = batch
        else:
            audio, audio_len, text, text_len, attn_prior, pitch, _ = batch

        spect, spect_len = self.preprocessor(input_signal=audio,
                                             length=audio_len)

        # pitch normalization
        zero_pitch_idx = pitch == 0
        pitch = (pitch - self.pitch_mean) / self.pitch_std
        pitch[zero_pitch_idx] = 0.0

        (
            pred_spect,
            _,
            pred_log_durs,
            pred_pitch,
            attn_soft,
            attn_logprob,
            attn_hard,
            attn_hard_dur,
        ) = self(
            text=text,
            text_len=text_len,
            pitch=pitch,
            spect=spect,
            spect_len=spect_len,
            attn_prior=attn_prior,
            lm_tokens=lm_tokens,
        )

        (
            loss,
            durs_loss,
            acc,
            acc_dist_1,
            acc_dist_3,
            pitch_loss,
            mel_loss,
            ctc_loss,
            bin_loss,
        ) = self._metrics(
            pred_durs=pred_log_durs,
            pred_pitch=pred_pitch,
            true_durs=attn_hard_dur,
            true_text_len=text_len,
            true_pitch=pitch,
            true_spect=spect,
            pred_spect=pred_spect,
            true_spect_len=spect_len,
            attn_logprob=attn_logprob,
            attn_soft=attn_soft,
            attn_hard=attn_hard,
            attn_hard_dur=attn_hard_dur,
        )

        train_log = {
            'train_loss':
            loss,
            'train_durs_loss':
            durs_loss,
            'train_pitch_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if pitch_loss is None else pitch_loss,
            'train_mel_loss':
            mel_loss,
            'train_durs_acc':
            acc,
            'train_durs_acc_dist_3':
            acc_dist_3,
            'train_ctc_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if ctc_loss is None else ctc_loss,
            'train_bin_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if bin_loss is None else bin_loss,
        }

        return {
            'loss': loss,
            'progress_bar': {k: v.detach()
                             for k, v in train_log.items()},
            'log': train_log
        }

    def validation_step(self, batch, batch_idx):
        attn_prior, lm_tokens = None, None
        if self.cond_on_lm_embeddings:
            audio, audio_len, text, text_len, attn_prior, pitch, _, lm_tokens = batch
        else:
            audio, audio_len, text, text_len, attn_prior, pitch, _ = batch

        spect, spect_len = self.preprocessor(input_signal=audio,
                                             length=audio_len)

        # pitch normalization
        zero_pitch_idx = pitch == 0
        pitch = (pitch - self.pitch_mean) / self.pitch_std
        pitch[zero_pitch_idx] = 0.0

        (
            pred_spect,
            _,
            pred_log_durs,
            pred_pitch,
            attn_soft,
            attn_logprob,
            attn_hard,
            attn_hard_dur,
        ) = self(
            text=text,
            text_len=text_len,
            pitch=pitch,
            spect=spect,
            spect_len=spect_len,
            attn_prior=attn_prior,
            lm_tokens=lm_tokens,
        )

        (
            loss,
            durs_loss,
            acc,
            acc_dist_1,
            acc_dist_3,
            pitch_loss,
            mel_loss,
            ctc_loss,
            bin_loss,
        ) = self._metrics(
            pred_durs=pred_log_durs,
            pred_pitch=pred_pitch,
            true_durs=attn_hard_dur,
            true_text_len=text_len,
            true_pitch=pitch,
            true_spect=spect,
            pred_spect=pred_spect,
            true_spect_len=spect_len,
            attn_logprob=attn_logprob,
            attn_soft=attn_soft,
            attn_hard=attn_hard,
            attn_hard_dur=attn_hard_dur,
        )

        # without ground truth internal features except for durations
        pred_spect, _, pred_log_durs, pred_pitch, attn_soft, attn_logprob, attn_hard, attn_hard_dur = self(
            text=text,
            text_len=text_len,
            pitch=None,
            spect=spect,
            spect_len=spect_len,
            attn_prior=attn_prior,
            lm_tokens=lm_tokens,
        )

        *_, with_pred_features_mel_loss, _, _ = self._metrics(
            pred_durs=pred_log_durs,
            pred_pitch=pred_pitch,
            true_durs=attn_hard_dur,
            true_text_len=text_len,
            true_pitch=pitch,
            true_spect=spect,
            pred_spect=pred_spect,
            true_spect_len=spect_len,
            attn_logprob=attn_logprob,
            attn_soft=attn_soft,
            attn_hard=attn_hard,
            attn_hard_dur=attn_hard_dur,
        )

        val_log = {
            'val_loss':
            loss,
            'val_durs_loss':
            durs_loss,
            'val_pitch_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if pitch_loss is None else pitch_loss,
            'val_mel_loss':
            mel_loss,
            'val_with_pred_features_mel_loss':
            with_pred_features_mel_loss,
            'val_durs_acc':
            acc,
            'val_durs_acc_dist_3':
            acc_dist_3,
            'val_ctc_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if ctc_loss is None else ctc_loss,
            'val_bin_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if bin_loss is None else bin_loss,
        }
        self.log_dict(val_log,
                      prog_bar=False,
                      on_epoch=True,
                      logger=True,
                      sync_dist=True)

        if batch_idx == 0 and self.current_epoch % 5 == 0 and isinstance(
                self.logger, WandbLogger):
            specs = []
            pitches = []
            for i in range(min(3, spect.shape[0])):
                specs += [
                    wandb.Image(
                        plot_spectrogram_to_numpy(
                            spect[i, :, :spect_len[i]].data.cpu().numpy()),
                        caption=f"gt mel {i}",
                    ),
                    wandb.Image(
                        plot_spectrogram_to_numpy(
                            pred_spect.transpose(
                                1, 2)[i, :, :spect_len[i]].data.cpu().numpy()),
                        caption=f"pred mel {i}",
                    ),
                ]

                pitches += [
                    wandb.Image(
                        plot_pitch_to_numpy(
                            average_pitch(pitch.unsqueeze(1),
                                          attn_hard_dur).squeeze(1)
                            [i, :text_len[i]].data.cpu().numpy(),
                            ylim_range=[-2.5, 2.5],
                        ),
                        caption=f"gt pitch {i}",
                    ),
                ]

                pitches += [
                    wandb.Image(
                        plot_pitch_to_numpy(
                            pred_pitch[i, :text_len[i]].data.cpu().numpy(),
                            ylim_range=[-2.5, 2.5]),
                        caption=f"pred pitch {i}",
                    ),
                ]

            self.logger.experiment.log({"specs": specs, "pitches": pitches})

    @typecheck(
        input_types={
            "tokens":
            NeuralType(('B', 'T_text'), TokenIndex(), optional=True),
            "tokens_len":
            NeuralType(('B'), LengthsType(), optional=True),
            "lm_tokens":
            NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
            "raw_texts": [NeuralType(optional=True)],
            "lm_model":
            NeuralType(optional=True),
        },
        output_types={
            "spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
        },
    )
    def generate_spectrogram(
        self,
        tokens: Optional[torch.Tensor] = None,
        tokens_len: Optional[torch.Tensor] = None,
        lm_tokens: Optional[torch.Tensor] = None,
        raw_texts: Optional[List[str]] = None,
        norm_text_for_lm_model: bool = True,
        lm_model: str = "albert",
    ):
        if tokens is not None:
            if tokens_len is None:
                # It is assumed that padding is consecutive and only at the end
                tokens_len = (tokens != self.tokenizer.pad).sum(dim=-1)
        else:
            if raw_texts is None:
                raise ValueError(
                    "raw_texts must be specified if tokens is None")

            t_seqs = [self.tokenizer(t) for t in raw_texts]
            tokens = torch.nn.utils.rnn.pad_sequence(
                sequences=[
                    torch.tensor(t, dtype=torch.long, device=self.device)
                    for t in t_seqs
                ],
                batch_first=True,
                padding_value=self.tokenizer.pad,
            )
            tokens_len = torch.tensor([len(t) for t in t_seqs],
                                      dtype=torch.long,
                                      device=tokens.device)

        if self.cond_on_lm_embeddings and lm_tokens is None:
            if raw_texts is None:
                raise ValueError(
                    "raw_texts must be specified if lm_tokens is None")

            lm_model_tokenizer = self._get_lm_model_tokenizer(lm_model)
            lm_padding_value = lm_model_tokenizer._convert_token_to_id('<pad>')
            lm_space_value = lm_model_tokenizer._convert_token_to_id('▁')

            assert isinstance(self.tokenizer,
                              EnglishCharsTokenizer) or isinstance(
                                  self.tokenizer, EnglishPhonemesTokenizer)

            if norm_text_for_lm_model and self.text_normalizer_call is not None:
                raw_texts = [
                    self.text_normalizer_call(
                        t, **self.text_normalizer_call_kwargs)
                    for t in raw_texts
                ]

            preprocess_texts_as_tts_input = [
                self.tokenizer.text_preprocessing_func(t) for t in raw_texts
            ]
            lm_tokens_as_ids_list = [
                lm_model_tokenizer.encode(t, add_special_tokens=False)
                for t in preprocess_texts_as_tts_input
            ]

            if self.tokenizer.pad_with_space:
                lm_tokens_as_ids_list = [[lm_space_value] + t +
                                         [lm_space_value]
                                         for t in lm_tokens_as_ids_list]

            lm_tokens = torch.full(
                (len(lm_tokens_as_ids_list),
                 max([len(t) for t in lm_tokens_as_ids_list])),
                fill_value=lm_padding_value,
                device=tokens.device,
            )
            for i, lm_tokens_i in enumerate(lm_tokens_as_ids_list):
                lm_tokens[i, :len(lm_tokens_i)] = torch.tensor(
                    lm_tokens_i, device=tokens.device)

        pred_spect = self.infer(tokens, tokens_len,
                                lm_tokens=lm_tokens).transpose(1, 2)
        return pred_spect

    def parse(self, text: str, normalize=True) -> torch.Tensor:
        if self.training:
            logging.warning("parse() is meant to be called in eval mode.")
        if normalize and self.text_normalizer_call is not None:
            text = self.text_normalizer_call(
                text, **self.text_normalizer_call_kwargs)

        eval_phon_mode = contextlib.nullcontext()
        if hasattr(self.tokenizer, "set_phone_prob"):
            eval_phon_mode = self.tokenizer.set_phone_prob(prob=1.0)

        with eval_phon_mode:
            tokens = self.tokenizer.encode(text)
        return torch.tensor(tokens).long().unsqueeze(0).to(self.device)

    def _loader(self, cfg):
        try:
            _ = cfg.dataset.manifest_filepath
        except omegaconf.errors.MissingMandatoryValue:
            logging.warning(
                "manifest_filepath was skipped. No dataset for this model.")
            return None

        dataset = instantiate(
            cfg.dataset,
            text_normalizer=self.normalizer,
            text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
            text_tokenizer=self.tokenizer,
        )
        return torch.utils.data.DataLoader(  # noqa
            dataset=dataset,
            collate_fn=dataset.collate_fn,
            **cfg.dataloader_params,
        )

    def setup_training_data(self, cfg):
        self._train_dl = self._loader(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self._loader(cfg)

    def setup_test_data(self, cfg):
        """Omitted."""
        pass

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_lj_mixertts",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_mixertts/versions/1.6.0/files/tts_en_lj_mixertts.nemo",
            description=
            "This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.",
            class_=cls,  # noqa
        )
        list_of_models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_lj_mixerttsx",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_mixerttsx/versions/1.6.0/files/tts_en_lj_mixerttsx.nemo",
            description=
            "This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.",
            class_=cls,  # noqa
        )
        list_of_models.append(model)

        return list_of_models

    # Methods for model exportability
    @property
    def input_types(self):
        return {
            "text":
            NeuralType(('B', 'T_text'), TokenIndex()),
            "lm_tokens":
            NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
        }

    @property
    def output_types(self):
        return {
            "spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
        }

    def input_example(self, max_text_len=10, max_lm_tokens_len=10):
        text = torch.randint(
            low=0,
            high=len(self.tokenizer.tokens),
            size=(1, max_text_len),
            device=self.device,
            dtype=torch.long,
        )

        inputs = {'text': text}

        if self.cond_on_lm_embeddings:
            inputs['lm_tokens'] = torch.randint(
                low=0,
                high=self.lm_embeddings.weight.shape[0],
                size=(1, max_lm_tokens_len),
                device=self.device,
                dtype=torch.long,
            )

        return (inputs, )

    def forward_for_export(self, text, lm_tokens=None):
        text_mask = (text != self.tokenizer_pad).unsqueeze(2)
        spect = self.infer(text=text, text_mask=text_mask,
                           lm_tokens=lm_tokens).transpose(1, 2)
        return spect.to(torch.float)
コード例 #9
0
ファイル: mixer_tts.py プロジェクト: quuhua911/NeMo
 def output_types(self):
     return {
         "spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
     }
コード例 #10
0
ファイル: univnet.py プロジェクト: NVIDIA/NeMo
class UnivNetModel(Vocoder, Exportable):
    """UnivNet model (https://arxiv.org/abs/2106.07889) that is used to generate audio from mel spectrogram."""
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        # Convert to Hydra 1.0 compatible DictConfig
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)

        super().__init__(cfg=cfg, trainer=trainer)

        self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
        # We use separate preprocessor for training, because we need to pass grads and remove pitch fmax limitation
        self.trg_melspec_fn = instantiate(cfg.preprocessor,
                                          highfreq=None,
                                          use_grads=True)
        self.generator = instantiate(
            cfg.generator,
            n_mel_channels=cfg.preprocessor.nfilt,
            hop_length=cfg.preprocessor.n_window_stride)
        self.mpd = MultiPeriodDiscriminator(
            cfg.discriminator.mpd,
            debug=cfg.debug if "debug" in cfg else False)
        self.mrd = MultiResolutionDiscriminator(
            cfg.discriminator.mrd,
            debug=cfg.debug if "debug" in cfg else False)

        self.discriminator_loss = DiscriminatorLoss()
        self.generator_loss = GeneratorLoss()

        # Reshape MRD resolutions hyperparameter and apply them to MRSTFT loss
        self.stft_resolutions = cfg.discriminator.mrd.resolutions
        self.fft_sizes = [res[0] for res in self.stft_resolutions]
        self.hop_sizes = [res[1] for res in self.stft_resolutions]
        self.win_lengths = [res[2] for res in self.stft_resolutions]
        self.mrstft_loss = MultiResolutionSTFTLoss(self.fft_sizes,
                                                   self.hop_sizes,
                                                   self.win_lengths)
        self.stft_lamb = cfg.stft_lamb

        self.sample_rate = self._cfg.preprocessor.sample_rate
        self.stft_bias = None

        self.input_as_mel = False
        if self._train_dl:
            self.input_as_mel = self._train_dl.dataset.load_precomputed_mel

        self.automatic_optimization = False

    def _get_max_steps(self):
        return compute_max_steps(
            max_epochs=self._cfg.max_epochs,
            accumulate_grad_batches=self.trainer.accumulate_grad_batches,
            limit_train_batches=self.trainer.limit_train_batches,
            num_workers=get_num_workers(self.trainer),
            num_samples=len(self._train_dl.dataset),
            batch_size=get_batch_size(self._train_dl),
            drop_last=self._train_dl.drop_last,
        )

    def configure_optimizers(self):
        optim_g = instantiate(
            self._cfg.optim,
            params=self.generator.parameters(),
        )
        optim_d = instantiate(
            self._cfg.optim,
            params=itertools.chain(self.mrd.parameters(),
                                   self.mpd.parameters()),
        )

        return [optim_g, optim_d]

    @typecheck()
    def forward(self, *, spec):
        """
        Runs the generator, for inputs and outputs see input_types, and output_types
        """
        return self.generator(x=spec)

    @typecheck(
        input_types={
            "spec": NeuralType(('B', 'C', 'T'), MelSpectrogramType())
        },
        output_types={"audio": NeuralType(('B', 'T'), AudioSignal())},
    )
    def convert_spectrogram_to_audio(self,
                                     spec: 'torch.tensor') -> 'torch.tensor':
        return self(spec=spec).squeeze(1)

    def training_step(self, batch, batch_idx):
        if self.input_as_mel:
            # Pre-computed spectrograms will be used as input
            audio, audio_len, audio_mel = batch
        else:
            audio, audio_len = batch
            audio_mel, _ = self.audio_to_melspec_precessor(audio, audio_len)

        audio = audio.unsqueeze(1)

        audio_pred = self.generator(x=audio_mel)
        audio_pred_mel, _ = self.trg_melspec_fn(audio_pred.squeeze(1),
                                                audio_len)

        optim_g, optim_d = self.optimizers()

        # Train discriminator
        optim_d.zero_grad()
        mpd_score_real, mpd_score_gen, _, _ = self.mpd(
            y=audio, y_hat=audio_pred.detach())
        loss_disc_mpd, _, _ = self.discriminator_loss(
            disc_real_outputs=mpd_score_real,
            disc_generated_outputs=mpd_score_gen)
        mrd_score_real, mrd_score_gen, _, _ = self.mrd(
            y=audio, y_hat=audio_pred.detach())
        loss_disc_mrd, _, _ = self.discriminator_loss(
            disc_real_outputs=mrd_score_real,
            disc_generated_outputs=mrd_score_gen)
        loss_d = loss_disc_mrd + loss_disc_mpd
        self.manual_backward(loss_d)
        optim_d.step()

        # Train generator
        optim_g.zero_grad()
        loss_sc, loss_mag = self.mrstft_loss(x=audio_pred.squeeze(1),
                                             y=audio.squeeze(1),
                                             input_lengths=audio_len)
        loss_sc = torch.stack(loss_sc).mean()
        loss_mag = torch.stack(loss_mag).mean()
        loss_mrstft = (loss_sc + loss_mag) * self.stft_lamb
        _, mpd_score_gen, _, _ = self.mpd(y=audio, y_hat=audio_pred)
        _, mrd_score_gen, _, _ = self.mrd(y=audio, y_hat=audio_pred)
        loss_gen_mpd, _ = self.generator_loss(disc_outputs=mpd_score_gen)
        loss_gen_mrd, _ = self.generator_loss(disc_outputs=mrd_score_gen)
        loss_g = loss_gen_mrd + loss_gen_mpd + loss_mrstft
        self.manual_backward(loss_g)
        optim_g.step()

        metrics = {
            "g_loss_sc": loss_sc,
            "g_loss_mag": loss_mag,
            "g_loss_mrstft": loss_mrstft,
            "g_loss_gen_mpd": loss_gen_mpd,
            "g_loss_gen_mrd": loss_gen_mrd,
            "g_loss": loss_g,
            "d_loss_mpd": loss_disc_mpd,
            "d_loss_mrd": loss_disc_mrd,
            "d_loss": loss_d,
            "global_step": self.global_step,
            "lr": optim_g.param_groups[0]['lr'],
        }
        self.log_dict(metrics, on_step=True, sync_dist=True)
        self.log("g_mrstft_loss",
                 loss_mrstft,
                 prog_bar=True,
                 logger=False,
                 sync_dist=True)

    def validation_step(self, batch, batch_idx):
        if self.input_as_mel:
            audio, audio_len, audio_mel = batch
            audio_mel_len = [audio_mel.shape[1]] * audio_mel.shape[0]
        else:
            audio, audio_len = batch
            audio_mel, audio_mel_len = self.audio_to_melspec_precessor(
                audio, audio_len)
        audio_pred = self(spec=audio_mel)

        # Perform bias denoising
        pred_denoised = self._bias_denoise(audio_pred, audio_mel).squeeze(1)
        pred_denoised_mel, _ = self.audio_to_melspec_precessor(
            pred_denoised, audio_len)

        if self.input_as_mel:
            gt_mel, gt_mel_len = self.audio_to_melspec_precessor(
                audio, audio_len)
        audio_pred_mel, _ = self.audio_to_melspec_precessor(
            audio_pred.squeeze(1), audio_len)
        loss_mel = F.l1_loss(audio_mel, audio_pred_mel)

        self.log_dict({"val_loss": loss_mel}, on_epoch=True, sync_dist=True)

        # Plot audio once per epoch
        if batch_idx == 0 and isinstance(self.logger,
                                         WandbLogger) and HAVE_WANDB:
            clips = []
            specs = []
            for i in range(min(5, audio.shape[0])):
                clips += [
                    wandb.Audio(
                        audio[i, :audio_len[i]].data.cpu().numpy(),
                        caption=f"real audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                    wandb.Audio(
                        audio_pred[i,
                                   0, :audio_len[i]].data.cpu().numpy().astype(
                                       'float32'),
                        caption=f"generated audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                    wandb.Audio(
                        pred_denoised[i, :audio_len[i]].data.cpu().numpy(),
                        caption=f"denoised audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                ]
                specs += [
                    wandb.Image(
                        plot_spectrogram_to_numpy(audio_mel[
                            i, :, :audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"input mel {i}",
                    ),
                    wandb.Image(
                        plot_spectrogram_to_numpy(audio_pred_mel[
                            i, :, :audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"output mel {i}",
                    ),
                    wandb.Image(
                        plot_spectrogram_to_numpy(pred_denoised_mel[
                            i, :, :audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"denoised mel {i}",
                    ),
                ]
                if self.input_as_mel:
                    specs += [
                        wandb.Image(
                            plot_spectrogram_to_numpy(gt_mel[
                                i, :, :audio_mel_len[i]].data.cpu().numpy()),
                            caption=f"gt mel {i}",
                        ),
                    ]

            self.logger.experiment.log({"audio": clips, "specs": specs})

    def _bias_denoise(self, audio, mel):
        def stft(x):
            comp = torch.stft(x.squeeze(1),
                              n_fft=1024,
                              hop_length=256,
                              win_length=1024)
            real, imag = comp[..., 0], comp[..., 1]
            mags = torch.sqrt(real**2 + imag**2)
            phase = torch.atan2(imag, real)
            return mags, phase

        def istft(mags, phase):
            comp = torch.stack(
                [mags * torch.cos(phase), mags * torch.sin(phase)], dim=-1)
            x = torch.istft(comp, n_fft=1024, hop_length=256, win_length=1024)
            return x

        # Create bias tensor
        if self.stft_bias is None or self.stft_bias.shape[0] != audio.shape[0]:
            audio_bias = self(spec=torch.zeros_like(mel, device=mel.device))
            self.stft_bias, _ = stft(audio_bias)
            self.stft_bias = self.stft_bias[:, :, 0][:, :, None]

        audio_mags, audio_phase = stft(audio)
        audio_mags = audio_mags - self.cfg.get("denoise_strength",
                                               0.0025) * self.stft_bias
        audio_mags = torch.clamp(audio_mags, 0.0)
        audio_denoised = istft(audio_mags, audio_phase).unsqueeze(1)

        return audio_denoised

    def __setup_dataloader_from_config(self,
                                       cfg,
                                       shuffle_should_be: bool = True,
                                       name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(
                cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True")
                with open_dict(cfg["dataloader_params"]):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(
                    f"The {name} dataloader for {self} has shuffle set to False!!!"
                )
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(
                f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(dataset,
                                           collate_fn=dataset.collate_fn,
                                           **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(
            cfg, shuffle_should_be=False, name="validation")

    def setup_test_data(self, cfg):
        pass

    @classmethod
    def list_available_models(cls) -> 'Optional[Dict[str, str]]':
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_lj_univnet",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_univnet/versions/1.7.0/files/tts_en_lj_univnet.nemo",
            description=
            "This model is trained on LJSpeech sampled at 22050Hz, and has been tested on generating female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_libritts_univnet",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_libritts_univnet/versions/1.7.0/files/tts_en_libritts_multispeaker_univnet.nemo",
            description=
            "This model is trained on all LibriTTS training data (train-clean-100, train-clean-360, and train-other-500) sampled at 22050Hz, and has been tested on generating English voices.",
            class_=cls,
        )
        list_of_models.append(model)

        return list_of_models

    # Methods for model exportability
    def _prepare_for_export(self, **kwargs):
        if self.generator is not None:
            try:
                self.generator.remove_weight_norm()
            except ValueError:
                return

    @property
    def input_types(self):
        return {
            "spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
        }

    @property
    def output_types(self):
        return {
            "audio": NeuralType(('B', 'S', 'T'),
                                AudioSignal(self.sample_rate)),
        }

    def input_example(self, max_batch=1, max_dim=256):
        """
        Generates input examples for tracing etc.
        Returns:
            A tuple of input examples.
        """
        par = next(self.parameters())
        mel = torch.randn(
            (max_batch, self.cfg['preprocessor']['nfilt'], max_dim),
            device=par.device,
            dtype=par.dtype)
        return ({'spec': mel}, )

    def forward_for_export(self, spec):
        """
        Runs the generator, for inputs and outputs see input_types, and output_types
        """
        return self.generator(x=spec)
コード例 #11
0
ファイル: fastspeech2.py プロジェクト: Mirzyaaliii/NeMo
class FastSpeech2Model(SpectrogramGenerator):
    """FastSpeech 2 model used to convert from text (phonemes) to mel-spectrograms."""
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        super().__init__(cfg=cfg, trainer=trainer)

        schema = OmegaConf.structured(FastSpeech2Config)
        # ModelPT ensures that cfg is a DictConfig, but do this second check in case ModelPT changes
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        elif not isinstance(cfg, DictConfig):
            raise ValueError(
                f"cfg was type: {type(cfg)}. Expected either a dict or a DictConfig"
            )
        # Ensure passed cfg is compliant with schema
        OmegaConf.merge(cfg, schema)

        self.pitch = cfg.add_pitch_predictor
        self.energy = cfg.add_energy_predictor
        self.duration_coeff = cfg.duration_coeff

        self.audio_to_melspec_preprocessor = instantiate(
            self._cfg.preprocessor)
        self.encoder = instantiate(self._cfg.encoder)
        self.mel_decoder = instantiate(self._cfg.decoder)
        self.variance_adapter = instantiate(self._cfg.variance_adaptor)
        self.loss = L2MelLoss()
        self.mseloss = torch.nn.MSELoss()
        self.durationloss = DurationLoss()

        self.log_train_images = False

        # Parser and mappings are used for inference only.
        self.parser = parsers.make_parser(name='en')
        if 'mappings_filepath' in cfg:
            mappings_filepath = cfg.get('mappings_filepath')
        else:
            logging.error(
                "ERROR: You must specify a mappings.json file in the config file under model.mappings_filepath."
            )
        mappings_filepath = self.register_artifact('mappings_filepath',
                                                   mappings_filepath)
        with open(mappings_filepath, 'r') as f:
            mappings = json.load(f)
            self.word2phones = mappings['word2phones']
            self.phone2idx = mappings['phone2idx']

    @typecheck(
        input_types={
            "text":
            NeuralType(('B', 'T'), TokenIndex()),
            "text_length":
            NeuralType(('B'), LengthsType()),
            "spec_len":
            NeuralType(('B'), LengthsType(), optional=True),
            "durations":
            NeuralType(('B', 'T'), TokenDurationType(), optional=True),
            "pitch":
            NeuralType(('B', 'T'), RegressionValuesType(), optional=True),
            "energies":
            NeuralType(('B', 'T'), RegressionValuesType(), optional=True),
        },
        output_types={
            "mel_spec":
            NeuralType(('B', 'T', 'C'), MelSpectrogramType()),
            "log_dur_preds":
            NeuralType(('B', 'T'), TokenDurationType(), optional=True),
            "pitch_preds":
            NeuralType(('B', 'T'), RegressionValuesType(), optional=True),
            "energy_preds":
            NeuralType(('B', 'T'), RegressionValuesType(), optional=True),
            "encoded_text_mask":
            NeuralType(('B', 'T', 'D'), MaskType()),
        },
    )
    def forward(self,
                *,
                text,
                text_length,
                spec_len=None,
                durations=None,
                pitch=None,
                energies=None):
        encoded_text, encoded_text_mask = self.encoder(text=text,
                                                       text_length=text_length)
        aligned_text, log_dur_preds, pitch_preds, energy_preds, spec_len = self.variance_adapter(
            x=encoded_text,
            x_len=text_length,
            dur_target=durations,
            pitch_target=pitch,
            energy_target=energies,
            spec_len=spec_len,
        )
        mel = self.mel_decoder(decoder_input=aligned_text, lengths=spec_len)
        return mel, log_dur_preds, pitch_preds, energy_preds, encoded_text_mask

    def training_step(self, batch, batch_idx):
        f, fl, t, tl, durations, pitch, energies = batch
        spec, spec_len = self.audio_to_melspec_preprocessor(f, fl)
        mel, log_dur_preds, pitch_preds, energy_preds, encoded_text_mask = self(
            text=t,
            text_length=tl,
            spec_len=spec_len,
            durations=durations,
            pitch=pitch,
            energies=energies)
        total_loss = self.loss(spec_pred=mel.transpose(1, 2),
                               spec_target=spec,
                               spec_target_len=spec_len,
                               pad_value=-11.52)
        self.log(name="train_mel_loss", value=total_loss.clone().detach())

        # Duration prediction loss
        dur_loss = self.durationloss(log_duration_pred=log_dur_preds,
                                     duration_target=durations.float(),
                                     mask=encoded_text_mask)
        dur_loss *= self.duration_coeff
        self.log(name="train_dur_loss", value=dur_loss)
        total_loss += dur_loss

        # Pitch prediction loss
        if self.pitch:
            pitch_loss = self.mseloss(pitch_preds, pitch)
            total_loss += pitch_loss
            self.log(name="train_pitch_loss", value=pitch_loss)

        # Energy prediction loss
        if self.energy:
            energy_loss = self.mseloss(energy_preds, energies)
            total_loss += energy_loss
            self.log(name="train_energy_loss", value=energy_loss)
        self.log(name="train_loss", value=total_loss)
        return {"loss": total_loss, "outputs": [spec, mel]}

    def training_epoch_end(self, outputs):
        if self.log_train_images and self.logger is not None and self.logger.experiment is not None:
            tb_logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        tb_logger = logger.experiment
                        break
            spec_target, spec_predict = outputs[0]["outputs"]
            tb_logger.add_image(
                "train_mel_target",
                plot_spectrogram_to_numpy(spec_target[0].data.cpu().numpy()),
                self.global_step,
                dataformats="HWC",
            )
            spec_predict = spec_predict[0].data.cpu().numpy()
            tb_logger.add_image(
                "train_mel_predicted",
                plot_spectrogram_to_numpy(spec_predict.T),
                self.global_step,
                dataformats="HWC",
            )
            self.log_train_images = False

            return super().training_epoch_end(outputs)

    def validation_step(self, batch, batch_idx):
        f, fl, t, tl, _, _, _ = batch
        spec, spec_len = self.audio_to_melspec_preprocessor(f, fl)
        mel, _, _, _, _ = self(text=t, text_length=tl, spec_len=spec_len)
        loss = self.loss(spec_pred=mel.transpose(1, 2),
                         spec_target=spec,
                         spec_target_len=spec_len,
                         pad_value=-11.52)
        return {
            "val_loss": loss,
            "mel_target": spec,
            "mel_pred": mel,
        }

    def validation_epoch_end(self, outputs):
        if self.logger is not None and self.logger.experiment is not None:
            tb_logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        tb_logger = logger.experiment
                        break
            _, spec_target, spec_predict = outputs[0].values()
            tb_logger.add_image(
                "val_mel_target",
                plot_spectrogram_to_numpy(spec_target[0].data.cpu().numpy()),
                self.global_step,
                dataformats="HWC",
            )
            spec_predict = spec_predict[0].data.cpu().numpy()
            tb_logger.add_image(
                "val_mel_predicted",
                plot_spectrogram_to_numpy(spec_predict.T),
                self.global_step,
                dataformats="HWC",
            )
        avg_loss = torch.stack([
            x['val_loss'] for x in outputs
        ]).mean()  # This reduces across batches, not workers!
        self.log('val_loss', avg_loss, sync_dist=True)

        self.log_train_images = True

    def parse(self,
              str_input: str,
              additional_word2phones=None) -> torch.tensor:
        """
        Parses text input and converts them to phoneme indices.

        str_input (str): The input text to be converted.
        additional_word2phones (dict): Optional dictionary mapping words to phonemes for updating the model's
            word2phones.  This will not overwrite the existing dictionary, just update it with OOV or new mappings.
            Defaults to None, which will keep the existing mapping.
        """
        # Update model's word2phones if applicable
        if additional_word2phones is not None:
            self.word2phones.update(additional_word2phones)

        # Convert text -> normalized text -> list of phones per word -> indices
        if str_input[-1] not in [".", "!", "?"]:
            str_input = str_input + "."
        norm_text = re.findall(r"""[\w']+|[.,!?;"]""",
                               self.parser._normalize(str_input))

        try:
            phones = [self.word2phones[t] for t in norm_text]
        except KeyError as error:
            logging.error(
                f"ERROR: The following word in the input is not in the model's dictionary and could not be converted"
                f" to phonemes: ({error}).\n"
                f"You can pass in an `additional_word2phones` dictionary with a conversion for"
                f" this word, e.g. {{'{error}': \['phone1', 'phone2', ...\]}} to update the model's mapping."
            )
            raise

        tokens = []
        for phone_list in phones:
            inds = [self.phone2idx[p] for p in phone_list]
            tokens += inds

        x = torch.tensor(tokens).unsqueeze_(0).long().to(self.device)
        return x

    @typecheck(output_types={
        "spect": NeuralType(('B', 'C', 'T'), MelSpectrogramType())
    })
    def generate_spectrogram(self, tokens: torch.Tensor) -> torch.Tensor:
        self.eval()
        token_len = torch.tensor([tokens.shape[1]]).to(self.device)
        spect, *_ = self(text=tokens, text_length=token_len)

        return spect.transpose(1, 2)

    def __setup_dataloader_from_config(self,
                                       cfg,
                                       shuffle_should_be: bool = True,
                                       name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(
                cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True")
                with open_dict(cfg.dataloader_params):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(
                    f"The {name} dataloader for {self} has shuffle set to False!!!"
                )
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(
                f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(dataset,
                                           collate_fn=dataset.collate_fn,
                                           **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(
            cfg, shuffle_should_be=False, name="validation")

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained models which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_fastspeech2",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_fastspeech_2/versions/1.0.0/files/tts_en_fastspeech2.nemo",
            description=
            "This model is trained on LJSpeech sampled at 22050Hz, and can be used to generate female English voices with an American accent.",
            class_=cls,
            aliases=["FastSpeech2-22050Hz"],
        )
        list_of_models.append(model)
        return list_of_models
コード例 #12
0
ファイル: univnet.py プロジェクト: NVIDIA/NeMo
 def output_types(self):
     return {
         "audio": NeuralType(('B', 'S', 'T'),
                             AudioSignal(self.sample_rate)),
     }
コード例 #13
0
ファイル: hifigan.py プロジェクト: Mirzyaaliii/NeMo
class HifiGanModel(Vocoder, Exportable):
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        super().__init__(cfg=cfg, trainer=trainer)

        self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
        # use a different melspec extractor because:
        # 1. we need to pass grads
        # 2. we need remove fmax limitation
        self.trg_melspec_fn = instantiate(cfg.preprocessor, highfreq=None, use_grads=True)
        self.generator = instantiate(cfg.generator)
        self.mpd = MultiPeriodDiscriminator(debug=cfg.debug if "debug" in cfg else False)
        self.msd = MultiScaleDiscriminator(debug=cfg.debug if "debug" in cfg else False)
        self.feature_loss = FeatureMatchingLoss()
        self.discriminator_loss = DiscriminatorLoss()
        self.generator_loss = GeneratorLoss()

        self.l1_factor = cfg.get("l1_loss_factor", 45)

        self.sample_rate = self._cfg.preprocessor.sample_rate
        self.stft_bias = None

        if self._train_dl and isinstance(self._train_dl.dataset, MelAudioDataset):
            self.input_as_mel = True
        else:
            self.input_as_mel = False

        self.automatic_optimization = False

    def configure_optimizers(self):
        self.optim_g = instantiate(self._cfg.optim, params=self.generator.parameters(),)
        self.optim_d = instantiate(
            self._cfg.optim, params=itertools.chain(self.msd.parameters(), self.mpd.parameters()),
        )

        if hasattr(self._cfg, 'sched'):
            self.scheduler_g = CosineAnnealing(
                optimizer=self.optim_g,
                max_steps=self._cfg.max_steps,
                min_lr=self._cfg.sched.min_lr,
                warmup_steps=self._cfg.sched.warmup_ratio * self._cfg.max_steps,
            )  # Use warmup to delay start
            sch1_dict = {
                'scheduler': self.scheduler_g,
                'interval': 'step',
            }

            self.scheduler_d = CosineAnnealing(
                optimizer=self.optim_d, max_steps=self._cfg.max_steps, min_lr=self._cfg.sched.min_lr,
            )
            sch2_dict = {
                'scheduler': self.scheduler_d,
                'interval': 'step',
            }

            return [self.optim_g, self.optim_d], [sch1_dict, sch2_dict]
        else:
            return [self.optim_g, self.optim_d]

    @property
    def input_types(self):
        return {
            "spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
        }

    @property
    def output_types(self):
        return {
            "audio": NeuralType(('B', 'S', 'T'), AudioSignal(self.sample_rate)),
        }

    @typecheck()
    def forward(self, *, spec):
        """
        Runs the generator, for inputs and outputs see input_types, and output_types
        """
        return self.generator(x=spec)

    @typecheck(
        input_types={"spec": NeuralType(('B', 'C', 'T'), MelSpectrogramType())},
        output_types={"audio": NeuralType(('B', 'T'), AudioSignal())},
    )
    def convert_spectrogram_to_audio(self, spec: 'torch.tensor') -> 'torch.tensor':
        return self(spec=spec).squeeze(1)

    def training_step(self, batch, batch_idx):
        # if in finetune mode the mels are pre-computed using a
        # spectrogram generator
        if self.input_as_mel:
            audio, audio_len, audio_mel = batch
        # else, we compute the mel using the ground truth audio
        else:
            audio, audio_len = batch
            # mel as input for generator
            audio_mel, _ = self.audio_to_melspec_precessor(audio, audio_len)

        # mel as input for L1 mel loss
        audio_trg_mel, _ = self.trg_melspec_fn(audio, audio_len)
        audio = audio.unsqueeze(1)

        audio_pred = self.generator(x=audio_mel)
        audio_pred_mel, _ = self.trg_melspec_fn(audio_pred.squeeze(1), audio_len)

        # train discriminator
        self.optim_d.zero_grad()
        mpd_score_real, mpd_score_gen, _, _ = self.mpd(y=audio, y_hat=audio_pred.detach())
        loss_disc_mpd, _, _ = self.discriminator_loss(
            disc_real_outputs=mpd_score_real, disc_generated_outputs=mpd_score_gen
        )
        msd_score_real, msd_score_gen, _, _ = self.msd(y=audio, y_hat=audio_pred.detach())
        loss_disc_msd, _, _ = self.discriminator_loss(
            disc_real_outputs=msd_score_real, disc_generated_outputs=msd_score_gen
        )
        loss_d = loss_disc_msd + loss_disc_mpd
        self.manual_backward(loss_d)
        self.optim_d.step()

        # train generator
        self.optim_g.zero_grad()
        loss_mel = F.l1_loss(audio_pred_mel, audio_trg_mel)
        _, mpd_score_gen, fmap_mpd_real, fmap_mpd_gen = self.mpd(y=audio, y_hat=audio_pred)
        _, msd_score_gen, fmap_msd_real, fmap_msd_gen = self.msd(y=audio, y_hat=audio_pred)
        loss_fm_mpd = self.feature_loss(fmap_r=fmap_mpd_real, fmap_g=fmap_mpd_gen)
        loss_fm_msd = self.feature_loss(fmap_r=fmap_msd_real, fmap_g=fmap_msd_gen)
        loss_gen_mpd, _ = self.generator_loss(disc_outputs=mpd_score_gen)
        loss_gen_msd, _ = self.generator_loss(disc_outputs=msd_score_gen)
        loss_g = loss_gen_msd + loss_gen_mpd + loss_fm_msd + loss_fm_mpd + loss_mel * self.l1_factor
        self.manual_backward(loss_g)
        self.optim_g.step()

        # run schedulers
        schedulers = self.lr_schedulers()
        if schedulers is not None:
            sch1, sch2 = schedulers
            sch1.step()
            sch2.step()

        metrics = {
            "g_loss_fm_mpd": loss_fm_mpd,
            "g_loss_fm_msd": loss_fm_msd,
            "g_loss_gen_mpd": loss_gen_mpd,
            "g_loss_gen_msd": loss_gen_msd,
            "g_loss": loss_g,
            "d_loss_mpd": loss_disc_mpd,
            "d_loss_msd": loss_disc_msd,
            "d_loss": loss_d,
            "global_step": self.global_step,
            "lr": self.optim_g.param_groups[0]['lr'],
        }
        self.log_dict(metrics, on_step=True, sync_dist=True)
        self.log("g_l1_loss", loss_mel, prog_bar=True, logger=False, sync_dist=True)

    def validation_step(self, batch, batch_idx):
        if self.input_as_mel:
            audio, audio_len, audio_mel = batch
            audio_mel_len = [audio_mel.shape[1]] * audio_mel.shape[0]
        else:
            audio, audio_len = batch
            audio_mel, audio_mel_len = self.audio_to_melspec_precessor(audio, audio_len)
        audio_pred = self(spec=audio_mel)

        # perform bias denoising
        pred_denoised = self._bias_denoise(audio_pred, audio_mel).squeeze(1)
        pred_denoised_mel, _ = self.audio_to_melspec_precessor(pred_denoised, audio_len)

        if self.input_as_mel:
            gt_mel, gt_mel_len = self.audio_to_melspec_precessor(audio, audio_len)
        audio_pred_mel, _ = self.audio_to_melspec_precessor(audio_pred.squeeze(1), audio_len)
        loss_mel = F.l1_loss(audio_mel, audio_pred_mel)

        self.log_dict({"val_loss": loss_mel}, on_epoch=True, sync_dist=True)

        # plot audio once per epoch
        if batch_idx == 0 and isinstance(self.logger, WandbLogger) and HAVE_WANDB:
            clips = []
            specs = []
            for i in range(min(5, audio.shape[0])):
                clips += [
                    wandb.Audio(
                        audio[i, : audio_len[i]].data.cpu().numpy(),
                        caption=f"real audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                    wandb.Audio(
                        audio_pred[i, 0, : audio_len[i]].data.cpu().numpy().astype('float32'),
                        caption=f"generated audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                    wandb.Audio(
                        pred_denoised[i, : audio_len[i]].data.cpu().numpy(),
                        caption=f"denoised audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                ]
                specs += [
                    wandb.Image(
                        plot_spectrogram_to_numpy(audio_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"input mel {i}",
                    ),
                    wandb.Image(
                        plot_spectrogram_to_numpy(audio_pred_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"output mel {i}",
                    ),
                    wandb.Image(
                        plot_spectrogram_to_numpy(pred_denoised_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"denoised mel {i}",
                    ),
                ]
                if self.input_as_mel:
                    specs += [
                        wandb.Image(
                            plot_spectrogram_to_numpy(gt_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
                            caption=f"gt mel {i}",
                        ),
                    ]

            self.logger.experiment.log({"audio": clips, "specs": specs})

    def _bias_denoise(self, audio, mel):
        def stft(x):
            comp = torch.stft(x.squeeze(1), n_fft=1024, hop_length=256, win_length=1024)
            real, imag = comp[..., 0], comp[..., 1]
            mags = torch.sqrt(real ** 2 + imag ** 2)
            phase = torch.atan2(imag, real)
            return mags, phase

        def istft(mags, phase):
            comp = torch.stack([mags * torch.cos(phase), mags * torch.sin(phase)], dim=-1)
            x = torch.istft(comp, n_fft=1024, hop_length=256, win_length=1024)
            return x

        # create bias tensor
        if self.stft_bias is None or self.stft_bias.shape[0] != audio.shape[0]:
            audio_bias = self(spec=torch.zeros_like(mel, device=mel.device))
            self.stft_bias, _ = stft(audio_bias)
            self.stft_bias = self.stft_bias[:, :, 0][:, :, None]

        audio_mags, audio_phase = stft(audio)
        audio_mags = audio_mags - self.cfg.get("denoise_strength", 0.0025) * self.stft_bias
        audio_mags = torch.clamp(audio_mags, 0.0)
        audio_denoised = istft(audio_mags, audio_phase).unsqueeze(1)

        return audio_denoised

    def __setup_dataloader_from_config(self, cfg, shuffle_should_be: bool = True, name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True"
                )
                with open_dict(cfg["dataloader_params"]):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(f"The {name} dataloader for {self} has shuffle set to False!!!")
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(cfg, shuffle_should_be=False, name="validation")

    @classmethod
    def list_available_models(cls) -> 'Optional[Dict[str, str]]':
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_hifigan",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_hifigan/versions/1.0.0rc1/files/tts_hifigan.nemo",
            description="This model is trained on LJSpeech audio sampled at 22050Hz and mel spectrograms generated from Tacotron2, TalkNet, and FastPitch. This model has been tested on generating female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)
        return list_of_models

    def load_state_dict(self, state_dict, strict=True):
        # override load_state_dict to give us some flexibility to be backward-compatible
        # with old checkpoints
        new_state_dict = {}
        num_resblocks = len(self.cfg['generator']['resblock_kernel_sizes'])
        for k, v in state_dict.items():
            new_k = k
            if 'resblocks' in k:
                parts = k.split(".")
                # only do this is the checkpoint type is older
                if len(parts) == 6:
                    layer = int(parts[2])
                    new_layer = f"{layer // num_resblocks}.{layer % num_resblocks}"
                    new_k = f"generator.resblocks.{new_layer}.{'.'.join(parts[3:])}"
            new_state_dict[new_k] = v
        super().load_state_dict(new_state_dict, strict=strict)

    def _prepare_for_export(self, **kwargs):
        """
        Override this method to prepare module for export. This is in-place operation.
        Base version does common necessary module replacements (Apex etc)
        """
        if self.generator is not None:
            self.generator.remove_weight_norm()

    def input_example(self):
        """
        Generates input examples for tracing etc.
        Returns:
            A tuple of input examples.
        """
        par = next(self.parameters())
        mel = torch.randn((1, self.cfg['preprocessor']['nfilt'], 96), device=par.device, dtype=par.dtype)
        return ({'spec': mel},)

    def forward_for_export(self, spec):
        """
        Runs the generator, for inputs and outputs see input_types, and output_types
        """
        return self.generator(x=spec)
コード例 #14
0
 def input_types(self):
     return {
         "audio": NeuralType(('B', 'T'), AudioSignal()),
         "audio_len": NeuralType(('B'), LengthsType()),
         "run_inverse": NeuralType(optional=True),
     }
コード例 #15
0
class GlowVocoder(Vocoder):
    """ Base class for all Vocoders that use a Glow or reversible Flow-based setup. """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._mode = OperationMode.infer
        self.bias_spect = None
        self.stft = None  # Required to be defined in children classes
        self.n_mel = None  # Required to be defined in children classes

    @property
    def mode(self):
        return self._mode

    @contextmanager
    def temp_mode(self, mode):
        old_mode = self.mode
        self.mode = mode
        try:
            yield
        finally:
            self.mode = old_mode

    @contextmanager
    def nemo_infer(self):  # Prepend with nemo to avoid any .infer() clashes with lightning or pytorch
        with ExitStack() as stack:
            stack.enter_context(self.temp_mode(OperationMode.infer))
            stack.enter_context(torch.no_grad())
            yield

    def check_children_attributes(self):
        if self.stft is None or self.n_mel is None:
            try:
                self.stft = self.audio_to_melspec_precessor.stft
                self.n_mel = self.audio_to_melspec_precessor.nfilt
            except AttributeError:
                raise AttributeError(
                    f"{self} did not have stft and n_mel defined. These two parameters are required for GlowVocoder's "
                    "methods to work"
                )

    def update_bias_spect(self):
        self.check_children_attributes()  # Ensure self.n_mel and self.stft are defined

        with self.nemo_infer():
            spect = torch.zeros((1, self.n_mel, 88)).to(self.device)
            bias_audio = self.convert_spectrogram_to_audio(spec=spect, sigma=0.0, denoise=False)
            bias_spect, _ = self.stft.transform(bias_audio)
            self.bias_spect = bias_spect[:, :, 0][:, :, None]

    @typecheck(
        input_types={"audio": NeuralType(('B', 'T'), AudioSignal()), "strength": NeuralType(optional=True)},
        output_types={"audio": NeuralType(('B', 'T'), AudioSignal())},
    )
    def denoise(self, audio: 'torch.tensor', strength: float = 0.01):
        self.check_children_attributes()  # Ensure self.n_mel and self.stft are defined

        if self.bias_spect is None:
            self.update_bias_spect()
        audio_spect, audio_angles = self.stft.transform(audio)
        audio_spect_denoised = audio_spect - self.bias_spect.to(audio.device) * strength
        audio_spect_denoised = torch.clamp(audio_spect_denoised, 0.0)
        audio_denoised = self.stft.inverse(audio_spect_denoised, audio_angles)
        return audio_denoised
コード例 #16
0
ファイル: ed_mel2spec.py プロジェクト: quuhua911/NeMo
 def output_types(self):
     return {
         "spec": NeuralType(('B', 'C', 'D', 'T'), SpectrogramType()),
     }
コード例 #17
0
class FastSpeech2HifiGanE2EModel(TextToWaveform):
    """An end-to-end speech synthesis model based on FastSpeech2 and HiFiGan that converts strings to audio without
    using the intermediate mel spectrogram representation."""
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        super().__init__(cfg=cfg, trainer=trainer)

        self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
        self.encoder = instantiate(cfg.encoder)
        self.variance_adapter = instantiate(cfg.variance_adaptor)

        self.generator = instantiate(cfg.generator)
        self.multiperioddisc = MultiPeriodDiscriminator()
        self.multiscaledisc = MultiScaleDiscriminator()

        self.melspec_fn = instantiate(cfg.preprocessor,
                                      highfreq=None,
                                      use_grads=True)
        self.mel_val_loss = L1MelLoss()
        self.durationloss = DurationLoss()
        self.feat_matching_loss = FeatureMatchingLoss()
        self.disc_loss = DiscriminatorLoss()
        self.gen_loss = GeneratorLoss()
        self.mseloss = torch.nn.MSELoss()

        self.energy = cfg.add_energy_predictor
        self.pitch = cfg.add_pitch_predictor
        self.mel_loss_coeff = cfg.mel_loss_coeff
        self.pitch_loss_coeff = cfg.pitch_loss_coeff
        self.energy_loss_coeff = cfg.energy_loss_coeff
        self.splice_length = cfg.splice_length

        self.use_energy_pred = False
        self.use_pitch_pred = False
        self.log_train_images = False
        self.logged_real_samples = False
        self._tb_logger = None
        self.sample_rate = cfg.sample_rate
        self.hop_size = cfg.hop_size

        # Parser and mappings are used for inference only.
        self.parser = parsers.make_parser(name='en')
        if 'mappings_filepath' in cfg:
            mappings_filepath = cfg.get('mappings_filepath')
        else:
            logging.error(
                "ERROR: You must specify a mappings.json file in the config file under model.mappings_filepath."
            )
        mappings_filepath = self.register_artifact('mappings_filepath',
                                                   mappings_filepath)
        with open(mappings_filepath, 'r') as f:
            mappings = json.load(f)
            self.word2phones = mappings['word2phones']
            self.phone2idx = mappings['phone2idx']

    @property
    def tb_logger(self):
        if self._tb_logger is None:
            if self.logger is None and self.logger.experiment is None:
                return None
            tb_logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        tb_logger = logger.experiment
                        break
            self._tb_logger = tb_logger
        return self._tb_logger

    def configure_optimizers(self):
        gen_params = chain(
            self.encoder.parameters(),
            self.generator.parameters(),
            self.variance_adapter.parameters(),
        )
        disc_params = chain(self.multiscaledisc.parameters(),
                            self.multiperioddisc.parameters())
        opt1 = torch.optim.AdamW(disc_params, lr=self._cfg.lr)
        opt2 = torch.optim.AdamW(gen_params, lr=self._cfg.lr)
        num_procs = self._trainer.num_gpus * self._trainer.num_nodes
        num_samples = len(self._train_dl.dataset)
        batch_size = self._train_dl.batch_size
        iter_per_epoch = np.ceil(num_samples / (num_procs * batch_size))
        max_steps = iter_per_epoch * self._trainer.max_epochs
        logging.info(f"MAX STEPS: {max_steps}")
        sch1 = NoamAnnealing(opt1,
                             d_model=256,
                             warmup_steps=3000,
                             max_steps=max_steps,
                             min_lr=1e-5)
        sch1_dict = {
            'scheduler': sch1,
            'interval': 'step',
        }
        sch2 = NoamAnnealing(opt2,
                             d_model=256,
                             warmup_steps=3000,
                             max_steps=max_steps,
                             min_lr=1e-5)
        sch2_dict = {
            'scheduler': sch2,
            'interval': 'step',
        }
        return [opt1, opt2], [sch1_dict, sch2_dict]

    @typecheck(
        input_types={
            "text":
            NeuralType(('B', 'T'), TokenIndex()),
            "text_length":
            NeuralType(('B'), LengthsType()),
            "splice":
            NeuralType(optional=True),
            "spec_len":
            NeuralType(('B'), LengthsType(), optional=True),
            "durations":
            NeuralType(('B', 'T'), TokenDurationType(), optional=True),
            "pitch":
            NeuralType(('B', 'T'), RegressionValuesType(), optional=True),
            "energies":
            NeuralType(('B', 'T'), RegressionValuesType(), optional=True),
        },
        output_types={
            "audio": NeuralType(('B', 'S', 'T'), MelSpectrogramType()),
            "splices": NeuralType(),
            "log_dur_preds": NeuralType(('B', 'T'), TokenLogDurationType()),
            "pitch_preds": NeuralType(('B', 'T'), RegressionValuesType()),
            "energy_preds": NeuralType(('B', 'T'), RegressionValuesType()),
            "encoded_text_mask": NeuralType(('B', 'T', 'D'), MaskType()),
        },
    )
    def forward(self,
                *,
                text,
                text_length,
                splice=True,
                durations=None,
                pitch=None,
                energies=None,
                spec_len=None):
        encoded_text, encoded_text_mask = self.encoder(text=text,
                                                       text_length=text_length)

        context, log_dur_preds, pitch_preds, energy_preds, spec_len = self.variance_adapter(
            x=encoded_text,
            x_len=text_length,
            dur_target=durations,
            pitch_target=pitch,
            energy_target=energies,
            spec_len=spec_len,
        )

        gen_in = context
        splices = None
        if splice:
            # Splice generated spec
            output = []
            splices = []
            for i, sample in enumerate(context):
                start = np.random.randint(
                    low=0,
                    high=min(int(sample.size(0)), int(spec_len[i])) -
                    self.splice_length)
                output.append(sample[start:start + self.splice_length, :])
                splices.append(start)
            gen_in = torch.stack(output)

        output = self.generator(x=gen_in.transpose(1, 2))

        return output, splices, log_dur_preds, pitch_preds, energy_preds, encoded_text_mask

    def training_step(self, batch, batch_idx, optimizer_idx):
        f, fl, t, tl, durations, pitch, energies = batch
        spec, spec_len = self.audio_to_melspec_precessor(f, fl)

        # train discriminator
        if optimizer_idx == 0:
            with torch.no_grad():
                audio_pred, splices, _, _, _, _ = self(
                    spec=spec,
                    spec_len=spec_len,
                    text=t,
                    text_length=tl,
                    durations=durations,
                    pitch=pitch if not self.use_pitch_pred else None,
                    energies=energies if not self.use_energy_pred else None,
                )
                real_audio = []
                for i, splice in enumerate(splices):
                    real_audio.append(
                        f[i, splice *
                          self.hop_size:(splice + self.splice_length) *
                          self.hop_size])
                real_audio = torch.stack(real_audio).unsqueeze(1)

            real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(
                real_audio, audio_pred)
            real_score_ms, gen_score_ms, _, _ = self.multiscaledisc(
                real_audio, audio_pred)

            loss_mp, loss_mp_real, _ = self.disc_loss(real_score_mp,
                                                      gen_score_mp)
            loss_ms, loss_ms_real, _ = self.disc_loss(real_score_ms,
                                                      gen_score_ms)
            loss_mp /= len(loss_mp_real)
            loss_ms /= len(loss_ms_real)
            loss_disc = loss_mp + loss_ms

            self.log("loss_discriminator", loss_disc, prog_bar=True)
            self.log("loss_discriminator_ms", loss_ms)
            self.log("loss_discriminator_mp", loss_mp)
            return loss_disc

        # train generator
        elif optimizer_idx == 1:
            audio_pred, splices, log_dur_preds, pitch_preds, energy_preds, encoded_text_mask = self(
                spec=spec,
                spec_len=spec_len,
                text=t,
                text_length=tl,
                durations=durations,
                pitch=pitch if not self.use_pitch_pred else None,
                energies=energies if not self.use_energy_pred else None,
            )
            real_audio = []
            for i, splice in enumerate(splices):
                real_audio.append(
                    f[i, splice * self.hop_size:(splice + self.splice_length) *
                      self.hop_size])
            real_audio = torch.stack(real_audio).unsqueeze(1)

            # Do HiFiGAN generator loss
            audio_length = torch.tensor([
                self.splice_length * self.hop_size
                for _ in range(real_audio.shape[0])
            ]).to(real_audio.device)
            real_spliced_spec, _ = self.melspec_fn(real_audio.squeeze(),
                                                   seq_len=audio_length)
            pred_spliced_spec, _ = self.melspec_fn(audio_pred.squeeze(),
                                                   seq_len=audio_length)
            loss_mel = torch.nn.functional.l1_loss(real_spliced_spec,
                                                   pred_spliced_spec)
            loss_mel *= self.mel_loss_coeff
            _, gen_score_mp, real_feat_mp, gen_feat_mp = self.multiperioddisc(
                real_audio, audio_pred)
            _, gen_score_ms, real_feat_ms, gen_feat_ms = self.multiscaledisc(
                real_audio, audio_pred)
            loss_gen_mp, list_loss_gen_mp = self.gen_loss(gen_score_mp)
            loss_gen_ms, list_loss_gen_ms = self.gen_loss(gen_score_ms)
            loss_gen_mp /= len(list_loss_gen_mp)
            loss_gen_ms /= len(list_loss_gen_ms)
            total_loss = loss_gen_mp + loss_gen_ms + loss_mel
            loss_feat_mp = self.feat_matching_loss(real_feat_mp, gen_feat_mp)
            loss_feat_ms = self.feat_matching_loss(real_feat_ms, gen_feat_ms)
            total_loss += loss_feat_mp + loss_feat_ms
            self.log(name="loss_gen_disc_feat",
                     value=loss_feat_mp + loss_feat_ms)
            self.log(name="loss_gen_disc_feat_ms", value=loss_feat_ms)
            self.log(name="loss_gen_disc_feat_mp", value=loss_feat_mp)

            self.log(name="loss_gen_mel", value=loss_mel)
            self.log(name="loss_gen_disc", value=loss_gen_mp + loss_gen_ms)
            self.log(name="loss_gen_disc_mp", value=loss_gen_mp)
            self.log(name="loss_gen_disc_ms", value=loss_gen_ms)

            dur_loss = self.durationloss(log_duration_pred=log_dur_preds,
                                         duration_target=durations.float(),
                                         mask=encoded_text_mask)
            self.log(name="loss_gen_duration", value=dur_loss)
            total_loss += dur_loss
            if self.pitch:
                pitch_loss = self.mseloss(
                    pitch_preds, pitch.float()) * self.pitch_loss_coeff
                total_loss += pitch_loss
                self.log(name="loss_gen_pitch", value=pitch_loss)
            if self.energy:
                energy_loss = self.mseloss(energy_preds,
                                           energies) * self.energy_loss_coeff
                total_loss += energy_loss
                self.log(name="loss_gen_energy", value=energy_loss)

            # Log images to tensorboard
            if self.log_train_images:
                self.log_train_images = False
                if self.logger is not None and self.logger.experiment is not None:
                    self.tb_logger.add_image(
                        "train_mel_target",
                        plot_spectrogram_to_numpy(
                            real_spliced_spec[0].data.cpu().numpy()),
                        self.global_step,
                        dataformats="HWC",
                    )
                    spec_predict = pred_spliced_spec[0].data.cpu().numpy()
                    self.tb_logger.add_image(
                        "train_mel_predicted",
                        plot_spectrogram_to_numpy(spec_predict),
                        self.global_step,
                        dataformats="HWC",
                    )
            self.log(name="loss_gen", prog_bar=True, value=total_loss)
            return total_loss

    def validation_step(self, batch, batch_idx):
        f, fl, t, tl, _, _, _ = batch
        spec, spec_len = self.audio_to_melspec_precessor(f, fl)
        audio_pred, _, _, _, _, _ = self(spec=spec,
                                         spec_len=spec_len,
                                         text=t,
                                         text_length=tl,
                                         splice=False)
        audio_pred.squeeze_()
        pred_spec, _ = self.melspec_fn(audio_pred, seq_len=spec_len)
        loss = self.mel_val_loss(spec_pred=pred_spec,
                                 spec_target=spec,
                                 spec_target_len=spec_len,
                                 pad_value=-11.52)

        return {
            "val_loss": loss,
            "audio_target": f.squeeze() if batch_idx == 0 else None,
            "audio_pred": audio_pred if batch_idx == 0 else None,
        }

    def on_train_epoch_start(self):
        # Switch to using energy predictions after 50% of training
        if not self.use_energy_pred and self.current_epoch >= np.ceil(
                0.5 * self._trainer.max_epochs):
            logging.info(
                f"Using energy predictions after epoch: {self.current_epoch}")
            self.use_energy_pred = True

        # Switch to using pitch predictions after 62.5% of training
        if not self.use_pitch_pred and self.current_epoch >= np.ceil(
                0.625 * self._trainer.max_epochs):
            logging.info(
                f"Using pitch predictions after epoch: {self.current_epoch}")
            self.use_pitch_pred = True

    def validation_epoch_end(self, outputs):
        if self.tb_logger is not None:
            _, audio_target, audio_predict = outputs[0].values()
            if not self.logged_real_samples:
                self.tb_logger.add_audio("val_target",
                                         audio_target[0].data.cpu(),
                                         self.global_step, self.sample_rate)
                self.logged_real_samples = True
            audio_predict = audio_predict[0].data.cpu()
            self.tb_logger.add_audio("val_pred", audio_predict,
                                     self.global_step, self.sample_rate)
        avg_loss = torch.stack([
            x['val_loss'] for x in outputs
        ]).mean()  # This reduces across batches, not workers!
        self.log('val_loss', avg_loss, sync_dist=True)

        self.log_train_images = True

    def __setup_dataloader_from_config(self,
                                       cfg,
                                       shuffle_should_be: bool = True,
                                       name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(
                cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True")
                with open_dict(cfg.dataloader_params):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(
                    f"The {name} dataloader for {self} has shuffle set to False!!!"
                )
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(
                f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(dataset,
                                           collate_fn=dataset.collate_fn,
                                           **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(
            cfg, shuffle_should_be=False, name="validation")

    def parse(self,
              str_input: str,
              additional_word2phones=None) -> torch.tensor:
        """
        Parses text input and converts them to phoneme indices.

        str_input (str): The input text to be converted.
        additional_word2phones (dict): Optional dictionary mapping words to phonemes for updating the model's
            word2phones.  This will not overwrite the existing dictionary, just update it with OOV or new mappings.
            Defaults to None, which will keep the existing mapping.
        """
        # Update model's word2phones if applicable
        if additional_word2phones is not None:
            self.word2phones.update(additional_word2phones)

        # Convert text -> normalized text -> list of phones per word -> indices
        if str_input[-1] not in [".", "!", "?"]:
            str_input = str_input + "."
        norm_text = re.findall(r"""[\w']+|[.,!?;"]""",
                               self.parser._normalize(str_input))

        try:
            phones = [self.word2phones[t] for t in norm_text]
        except KeyError as error:
            logging.error(
                f"ERROR: The following word in the input is not in the model's dictionary and could not be converted"
                f" to phonemes: ({error}).\n"
                f"You can pass in an `additional_word2phones` dictionary with a conversion for"
                f" this word, e.g. {{'{error}': \['phone1', 'phone2', ...\]}} to update the model's mapping."
            )
            raise

        tokens = []
        for phone_list in phones:
            inds = [self.phone2idx[p] for p in phone_list]
            tokens += inds

        x = torch.tensor(tokens).unsqueeze_(0).long().to(self.device)
        return x

    def convert_text_to_waveform(self, *, tokens):
        """
        Accepts tokens returned from self.parse() and returns a list of tensors. Note: The tensors in the list can have
        different lengths.
        """
        self.eval()
        token_len = torch.tensor([len(i) for i in tokens]).to(self.device)
        audio, _, log_dur_pred, _, _, _ = self(text=tokens,
                                               text_length=token_len,
                                               splice=False)
        audio = audio.squeeze(1)
        durations = torch.sum(torch.exp(log_dur_pred) - 1, 1).to(torch.int)
        audio_list = []
        for i, sample in enumerate(audio):
            audio_list.append(sample[:durations[i] * self.hop_size])

        return audio_list

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_e2e_fastspeech2hifigan",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_e2e_fastspeech2hifigan/versions/1.0.0/files/tts_en_e2e_fastspeech2hifigan.nemo",
            description=
            "This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)

        return list_of_models
コード例 #18
0
ファイル: tacotron2.py プロジェクト: kssteven418/Q-ASR
 def input_types(self):
     return {
         "mel_spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
     }
コード例 #19
0
ファイル: fastpitchloss.py プロジェクト: jfsantos/NeMo
 def input_types(self):
     return {
         "log_durs_predicted": NeuralType(('B', 'T'), TokenLogDurationType()),
         "durs_tgt": NeuralType(('B', 'T'), TokenDurationType()),
         "len": NeuralType(('B'), LengthsType()),
     }
コード例 #20
0
ファイル: tacotron2.py プロジェクト: kssteven418/Q-ASR
 def input_types(self):
     return {
         "token_embedding": NeuralType(('B', 'D', 'T'), EmbeddedTextType()),
         "token_len": NeuralType(('B'), LengthsType()),
     }
コード例 #21
0
ファイル: fastpitchloss.py プロジェクト: jfsantos/NeMo
 def input_types(self):
     return {
         "pitch_predicted": NeuralType(('B', 'T'), RegressionValuesType()),
         "pitch_tgt": NeuralType(('B', 'T'), RegressionValuesType()),
         "len": NeuralType(('B'), LengthsType()),
     }
コード例 #22
0
ファイル: tacotron2.py プロジェクト: kssteven418/Q-ASR
 def output_types(self):
     return {
         "encoder_embedding": NeuralType(('B', 'T', 'D'),
                                         EmbeddedTextType()),
     }
コード例 #23
0
class UniGlowModel(Vocoder):
    """Waveglow model used to convert betweeen spectrograms and audio"""
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        super().__init__(cfg=cfg, trainer=trainer)

        schema = OmegaConf.structured(WaveglowConfig)
        # ModelPT ensures that cfg is a DictConfig, but do this second check in case ModelPT changes
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        elif not isinstance(cfg, DictConfig):
            raise ValueError(
                f"cfg was type: {type(cfg)}. Expected either a dict or a DictConfig"
            )
        # Ensure passed cfg is compliant with schema
        OmegaConf.merge(cfg, schema)

        self.sigma = self._cfg.sigma
        self.audio_to_melspec_precessor = instantiate(self._cfg.preprocessor)
        self.model = UniGlowModule(
            self._cfg.uniglow.n_mel_channels,
            self._cfg.uniglow.n_flows,
            self._cfg.uniglow.n_group,
            self._cfg.uniglow.n_wn_channels,
            self._cfg.uniglow.n_wn_layers,
            self._cfg.uniglow.wn_kernel_size,
            self.get_upsample_factor(),
        )
        self.mode = OperationMode.infer
        self.loss = UniGlowLoss(self._cfg.uniglow.stft_loss_coef)
        self.removed_weightnorm = False

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, new_mode):
        if new_mode == OperationMode.training:
            self.train()
        else:
            self.eval()
        self._mode = new_mode
        self.model.mode = new_mode

    @property
    def input_types(self):
        return {
            "audio": NeuralType(('B', 'T'), AudioSignal()),
            "audio_len": NeuralType(('B'), LengthsType()),
        }

    @property
    def output_types(self):
        if self.mode == OperationMode.training or self.mode == OperationMode.validation:
            output_dict = {
                "pred_normal_dist":
                NeuralType(('B', 'flowgroup', 'T'),
                           NormalDistributionSamplesType()),
                "logdet":
                NeuralType(elements_type=LogDeterminantType()),
                "predicted_audio":
                NeuralType(('B', 'T'), AudioSignal()),
            }
            if self.mode == OperationMode.validation:
                output_dict["spec"] = NeuralType(('B', 'T', 'D'),
                                                 MelSpectrogramType())
                output_dict["spec_len"] = NeuralType(('B'), LengthsType())
            return output_dict
        return {
            "audio_pred": NeuralType(('B', 'T'), AudioSignal()),
        }

    @typecheck()
    def forward(self, *, audio, audio_len):
        if self.mode != self.model.mode:
            raise ValueError(
                f"WaveGlowModel's mode {self.mode} does not match WaveGlowModule's mode {self.model.mode}"
            )
        spec, spec_len = self.audio_to_melspec_precessor(audio, audio_len)
        tensors = self.model(spec=spec, audio=audio, sigma=self.sigma)
        if self.mode == OperationMode.training:
            return tensors  # z, logdet, audio_pred
        elif self.mode == OperationMode.validation:
            z, logdet, audio_pred = tensors
            return z, logdet, audio_pred, spec, spec_len
        return tensors

    @typecheck(
        input_types={
            "spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
            "sigma": NeuralType(optional=True)
        },
        output_types={"audio": NeuralType(('B', 'T'), AudioSignal())},
    )
    def convert_spectrogram_to_audio(self,
                                     spec: torch.Tensor,
                                     sigma: float = 1.0) -> torch.Tensor:
        if not self.removed_weightnorm:
            self.waveglow.remove_weightnorm()
            self.removed_weightnorm = True
        self.mode = OperationMode.infer

        with torch.no_grad():
            audio = self.model(spec=spec, audio=None, sigma=sigma)

        return audio

    def training_step(self, batch, batch_idx):
        self.mode = OperationMode.training
        audio, audio_len = batch
        z, logdet, predicted_audio = self(audio=audio, audio_len=audio_len)
        loss = self.loss(z=z,
                         logdet=logdet,
                         gt_audio=audio,
                         predicted_audio=predicted_audio,
                         sigma=self.sigma)
        output = {
            'loss': loss,
            'progress_bar': {
                'training_loss': loss
            },
            'log': {
                'loss': loss
            },
        }
        return output

    def validation_step(self, batch, batch_idx):
        self.mode = OperationMode.validation
        audio, audio_len = batch
        z, logdet, predicted_audio, spec, spec_len = self(audio=audio,
                                                          audio_len=audio_len)
        loss = self.loss(z=z,
                         logdet=logdet,
                         gt_audio=audio,
                         predicted_audio=predicted_audio,
                         sigma=self.sigma)

        # compute average stoi score for batch
        stoi_score = 0
        sr = self._cfg.preprocessor.sample_rate
        for audio_i, audio_recon_i in zip(audio.cpu(), predicted_audio.cpu()):
            stoi_score += stoi(audio_i, audio_recon_i, sr)
        stoi_score /= audio.shape[0]

        return {
            "val_loss": loss,
            "predicted_audio": predicted_audio,
            "mel_target": spec,
            "mel_len": spec_len,
            "stoi": stoi_score,
        }

    def validation_epoch_end(self, outputs):
        if self.logger is not None and self.logger.experiment is not None:
            tb_logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        tb_logger = logger.experiment
                        break
            waveglow_log_to_tb_func(
                tb_logger,
                tuple(outputs[0].values())[:-1],
                self.global_step,
                tag="eval",
                mel_fb=self.audio_to_melspec_precessor.fb,
            )
        avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        avg_stoi = torch.FloatTensor([x['stoi'] for x in outputs]).mean()
        tensorboard_logs = {'val_loss': avg_loss, 'stoi': avg_stoi}
        logging.info(
            f"Validation summary | Epoch {self.current_epoch} | NLL {avg_loss:.2f} | STOI: {avg_stoi:.2f}"
        )
        return {'val_loss': avg_loss, 'log': tensorboard_logs}

    def __setup_dataloader_from_config(self,
                                       cfg,
                                       shuffle_should_be: bool = True,
                                       name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(
                cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True")
                with open_dict(cfg["dataloader_params"]):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(
                    f"The {name} dataloader for {self} has shuffle set to False!!!"
                )
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(
                f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(dataset,
                                           collate_fn=dataset.collate_fn,
                                           **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(
            cfg, shuffle_should_be=False, name="validation")

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="UniGlow-22050Hz",
            location=
            "https://drive.google.com/file/d/18JO5heoz1pBicZnGGqJzAJYMpzxiDQDa/view?usp=sharing",
            description=
            "The model is trained on LJSpeech sampled at 22050Hz, and can be used as an universal vocoder",
        )
        list_of_models.append(model)
        return list_of_models

    def get_upsample_factor(self) -> int:
        """
        As the MelSpectrogram upsampling is done using interpolation, the upsampling factor is determined
        by the ratio of the MelSpectrogram length and the waveform length
        Returns:
            An integer representing the upsampling factor
        """
        audio = torch.ones(1, self._cfg.train_ds.dataset.n_segments)
        spec, spec_len = self.audio_to_melspec_precessor(
            audio, torch.FloatTensor([len(audio)]))
        spec = spec[:, :, :-1]
        audio = audio.unfold(1, self._cfg.uniglow.n_group,
                             self._cfg.uniglow.n_group).permute(0, 2, 1)
        upsample_factor = audio.shape[2] // spec.shape[2]
        return upsample_factor
コード例 #24
0
ファイル: tacotron2.py プロジェクト: NVIDIA/NeMo
 def output_types(self):
     if not self.calculate_loss and not self.training:
         return {
             "spec_pred_dec":
             NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
             "spec_pred_postnet":
             NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
             "gate_pred":
             NeuralType(('B', 'T'), LogitsType()),
             "alignments":
             NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
             "pred_length":
             NeuralType(('B'), LengthsType()),
         }
     return {
         "spec_pred_dec":
         NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
         "spec_pred_postnet":
         NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
         "gate_pred":
         NeuralType(('B', 'T'), LogitsType()),
         "spec_target":
         NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
         "spec_target_len":
         NeuralType(('B'), LengthsType()),
         "alignments":
         NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
     }
コード例 #25
0
 def input_types(self):
     return {
         "decoder_input": NeuralType(('B', 'T', 'D'),
                                     EncodedRepresentation()),
         "lengths": NeuralType(('B'), LengthsType()),
     }
コード例 #26
0
ファイル: tacotron2.py プロジェクト: NVIDIA/NeMo
class Tacotron2Model(SpectrogramGenerator):
    """Tacotron 2 Model that is used to generate mel spectrograms from text"""
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        # Convert to Hydra 1.0 compatible DictConfig
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)

        # setup normalizer
        self.normalizer = None
        self.text_normalizer_call = None
        self.text_normalizer_call_kwargs = {}
        self._setup_normalizer(cfg)

        # setup tokenizer
        self.tokenizer = None
        if hasattr(cfg, 'text_tokenizer'):
            self._setup_tokenizer(cfg)

            self.num_tokens = len(self.tokenizer.tokens)
            self.tokenizer_pad = self.tokenizer.pad
            self.tokenizer_unk = self.tokenizer.oov
            # assert self.tokenizer is not None
        else:
            self.num_tokens = len(cfg.labels) + 3

        super().__init__(cfg=cfg, trainer=trainer)

        schema = OmegaConf.structured(Tacotron2Config)
        # ModelPT ensures that cfg is a DictConfig, but do this second check in case ModelPT changes
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        elif not isinstance(cfg, DictConfig):
            raise ValueError(
                f"cfg was type: {type(cfg)}. Expected either a dict or a DictConfig"
            )
        # Ensure passed cfg is compliant with schema
        try:
            OmegaConf.merge(cfg, schema)
            self.pad_value = cfg.preprocessor.pad_value
        except ConfigAttributeError:
            self.pad_value = cfg.preprocessor.params.pad_value
            logging.warning(
                "Your config is using an old NeMo yaml configuration. Please ensure that the yaml matches the "
                "current version in the main branch for future compatibility.")

        self._parser = None
        self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
        self.text_embedding = nn.Embedding(self.num_tokens, 512)
        self.encoder = instantiate(self._cfg.encoder)
        self.decoder = instantiate(self._cfg.decoder)
        self.postnet = instantiate(self._cfg.postnet)
        self.loss = Tacotron2Loss()
        self.calculate_loss = True

    @property
    def parser(self):
        if self._parser is not None:
            return self._parser

        ds_class_name = self._cfg.train_ds.dataset._target_.split(".")[-1]
        if ds_class_name == "TTSDataset":
            self._parser = None
        elif hasattr(self._cfg, "labels"):
            self._parser = parsers.make_parser(
                labels=self._cfg.labels,
                name='en',
                unk_id=-1,
                blank_id=-1,
                do_normalize=True,
                abbreviation_version="fastpitch",
                make_table=False,
            )
        elif ds_class_name == "AudioToCharWithPriorAndPitchDataset":
            self.parser = self.vocab.encode
        else:
            raise ValueError(
                "Wanted to setup parser, but model does not have necessary paramaters"
            )

        return self._parser

    def parse(self, text: str, normalize=True) -> torch.Tensor:
        if self.training:
            logging.warning("parse() is meant to be called in eval mode.")
        if normalize and self.text_normalizer_call is not None:
            text = self.text_normalizer_call(
                text, **self.text_normalizer_call_kwargs)

        eval_phon_mode = contextlib.nullcontext()
        if hasattr(self.tokenizer, "set_phone_prob"):
            eval_phon_mode = self.tokenizer.set_phone_prob(prob=1.0)

        with eval_phon_mode:
            if self.tokenizer is not None:
                tokens = self.tokenizer.encode(text)
            else:
                tokens = self.parser(text)
                # Old parser doesn't add bos and eos ids, so maunally add it
                tokens = [len(self._cfg.labels)
                          ] + tokens + [len(self._cfg.labels) + 1]
        tokens_tensor = torch.tensor(tokens).unsqueeze_(0).to(self.device)
        return tokens_tensor

    @property
    def input_types(self):
        if self.training:
            return {
                "tokens": NeuralType(('B', 'T'), EmbeddedTextType()),
                "token_len": NeuralType(('B'), LengthsType()),
                "audio": NeuralType(('B', 'T'), AudioSignal()),
                "audio_len": NeuralType(('B'), LengthsType()),
            }
        else:
            return {
                "tokens": NeuralType(('B', 'T'), EmbeddedTextType()),
                "token_len": NeuralType(('B'), LengthsType()),
                "audio": NeuralType(('B', 'T'), AudioSignal(), optional=True),
                "audio_len": NeuralType(('B'), LengthsType(), optional=True),
            }

    @property
    def output_types(self):
        if not self.calculate_loss and not self.training:
            return {
                "spec_pred_dec":
                NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
                "spec_pred_postnet":
                NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
                "gate_pred":
                NeuralType(('B', 'T'), LogitsType()),
                "alignments":
                NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
                "pred_length":
                NeuralType(('B'), LengthsType()),
            }
        return {
            "spec_pred_dec":
            NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
            "spec_pred_postnet":
            NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
            "gate_pred":
            NeuralType(('B', 'T'), LogitsType()),
            "spec_target":
            NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
            "spec_target_len":
            NeuralType(('B'), LengthsType()),
            "alignments":
            NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
        }

    @typecheck()
    def forward(self, *, tokens, token_len, audio=None, audio_len=None):
        if audio is not None and audio_len is not None:
            spec_target, spec_target_len = self.audio_to_melspec_precessor(
                audio, audio_len)
        token_embedding = self.text_embedding(tokens).transpose(1, 2)
        encoder_embedding = self.encoder(token_embedding=token_embedding,
                                         token_len=token_len)
        if self.training:
            spec_pred_dec, gate_pred, alignments = self.decoder(
                memory=encoder_embedding,
                decoder_inputs=spec_target,
                memory_lengths=token_len)
        else:
            spec_pred_dec, gate_pred, alignments, pred_length = self.decoder(
                memory=encoder_embedding, memory_lengths=token_len)
        spec_pred_postnet = self.postnet(mel_spec=spec_pred_dec)

        if not self.calculate_loss:
            return spec_pred_dec, spec_pred_postnet, gate_pred, alignments, pred_length
        return spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, alignments

    @typecheck(
        input_types={"tokens": NeuralType(('B', 'T'), EmbeddedTextType())},
        output_types={
            "spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType())
        },
    )
    def generate_spectrogram(self, *, tokens):
        self.eval()
        self.calculate_loss = False
        token_len = torch.tensor([len(i) for i in tokens]).to(self.device)
        tensors = self(tokens=tokens, token_len=token_len)
        spectrogram_pred = tensors[1]

        if spectrogram_pred.shape[0] > 1:
            # Silence all frames past the predicted end
            mask = ~get_mask_from_lengths(tensors[-1])
            mask = mask.expand(spectrogram_pred.shape[1], mask.size(0),
                               mask.size(1))
            mask = mask.permute(1, 0, 2)
            spectrogram_pred.data.masked_fill_(mask, self.pad_value)

        return spectrogram_pred

    def training_step(self, batch, batch_idx):
        audio, audio_len, tokens, token_len = batch
        spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, _ = self.forward(
            audio=audio,
            audio_len=audio_len,
            tokens=tokens,
            token_len=token_len)

        loss, _ = self.loss(
            spec_pred_dec=spec_pred_dec,
            spec_pred_postnet=spec_pred_postnet,
            gate_pred=gate_pred,
            spec_target=spec_target,
            spec_target_len=spec_target_len,
            pad_value=self.pad_value,
        )

        output = {
            'loss': loss,
            'progress_bar': {
                'training_loss': loss
            },
            'log': {
                'loss': loss
            },
        }
        return output

    def validation_step(self, batch, batch_idx):
        audio, audio_len, tokens, token_len = batch
        spec_pred_dec, spec_pred_postnet, gate_pred, spec_target, spec_target_len, alignments = self.forward(
            audio=audio,
            audio_len=audio_len,
            tokens=tokens,
            token_len=token_len)

        loss, gate_target = self.loss(
            spec_pred_dec=spec_pred_dec,
            spec_pred_postnet=spec_pred_postnet,
            gate_pred=gate_pred,
            spec_target=spec_target,
            spec_target_len=spec_target_len,
            pad_value=self.pad_value,
        )
        return {
            "val_loss": loss,
            "mel_target": spec_target,
            "mel_postnet": spec_pred_postnet,
            "gate": gate_pred,
            "gate_target": gate_target,
            "alignments": alignments,
        }

    def validation_epoch_end(self, outputs):
        if self.logger is not None and self.logger.experiment is not None:
            logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        logger = logger.experiment
                        break
            if isinstance(logger, TensorBoardLogger):
                tacotron2_log_to_tb_func(
                    logger,
                    outputs[0].values(),
                    self.global_step,
                    tag="val",
                    log_images=True,
                    add_audio=False,
                )
            elif isinstance(logger, WandbLogger):
                tacotron2_log_to_wandb_func(
                    logger,
                    outputs[0].values(),
                    self.global_step,
                    tag="val",
                    log_images=True,
                    add_audio=False,
                )
        avg_loss = torch.stack([
            x['val_loss'] for x in outputs
        ]).mean()  # This reduces across batches, not workers!
        self.log('val_loss', avg_loss)

    def _setup_normalizer(self, cfg):
        if "text_normalizer" in cfg:
            normalizer_kwargs = {}

            if "whitelist" in cfg.text_normalizer:
                normalizer_kwargs["whitelist"] = self.register_artifact(
                    'text_normalizer.whitelist', cfg.text_normalizer.whitelist)

            self.normalizer = instantiate(cfg.text_normalizer,
                                          **normalizer_kwargs)
            self.text_normalizer_call = self.normalizer.normalize
            if "text_normalizer_call_kwargs" in cfg:
                self.text_normalizer_call_kwargs = cfg.text_normalizer_call_kwargs

    def _setup_tokenizer(self, cfg):
        text_tokenizer_kwargs = {}
        if "g2p" in cfg.text_tokenizer and cfg.text_tokenizer.g2p is not None:
            g2p_kwargs = {}

            if "phoneme_dict" in cfg.text_tokenizer.g2p:
                g2p_kwargs["phoneme_dict"] = self.register_artifact(
                    'text_tokenizer.g2p.phoneme_dict',
                    cfg.text_tokenizer.g2p.phoneme_dict,
                )

            if "heteronyms" in cfg.text_tokenizer.g2p:
                g2p_kwargs["heteronyms"] = self.register_artifact(
                    'text_tokenizer.g2p.heteronyms',
                    cfg.text_tokenizer.g2p.heteronyms,
                )

            text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p,
                                                       **g2p_kwargs)

        self.tokenizer = instantiate(cfg.text_tokenizer,
                                     **text_tokenizer_kwargs)

    def __setup_dataloader_from_config(self,
                                       cfg,
                                       shuffle_should_be: bool = True,
                                       name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(
                cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True")
                with open_dict(cfg.dataloader_params):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(
                    f"The {name} dataloader for {self} has shuffle set to False!!!"
                )
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(
                f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(
            cfg.dataset,
            text_normalizer=self.normalizer,
            text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
            text_tokenizer=self.tokenizer,
        )

        return torch.utils.data.DataLoader(dataset,
                                           collate_fn=dataset.collate_fn,
                                           **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(
            cfg, shuffle_should_be=False, name="validation")

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_tacotron2",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_tacotron2/versions/1.0.0/files/tts_en_tacotron2.nemo",
            description=
            "This model is trained on LJSpeech sampled at 22050Hz, and can be used to generate female English voices with an American accent.",
            class_=cls,
            aliases=["Tacotron2-22050Hz"],
        )
        list_of_models.append(model)
        return list_of_models
コード例 #27
0
 def input_types(self):  # phonemes
     return {
         "text": NeuralType(('B', 'T'), TokenIndex()),
         "text_length": NeuralType(('B'), LengthsType())
     }
コード例 #28
0
class FastPitchHifiGanE2EModel(TextToWaveform):
    """An end-to-end speech synthesis model based on FastPitch and HiFiGan that converts strings to audio without using
    the intermediate mel spectrogram representation.
    """
    def __init__(self, cfg: DictConfig, trainer: Trainer = None):
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)

        self._parser = parsers.make_parser(
            labels=cfg.labels,
            name='en',
            unk_id=-1,
            blank_id=-1,
            do_normalize=True,
            abbreviation_version="fastpitch",
            make_table=False,
        )

        super().__init__(cfg=cfg, trainer=trainer)

        schema = OmegaConf.structured(FastPitchHifiGanE2EConfig)
        # ModelPT ensures that cfg is a DictConfig, but do this second check in case ModelPT changes
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        elif not isinstance(cfg, DictConfig):
            raise ValueError(
                f"cfg was type: {type(cfg)}. Expected either a dict or a DictConfig"
            )
        # Ensure passed cfg is compliant with schema
        OmegaConf.merge(cfg, schema)

        self.preprocessor = instantiate(cfg.preprocessor)
        self.melspec_fn = instantiate(cfg.preprocessor,
                                      highfreq=None,
                                      use_grads=True)

        self.encoder = instantiate(cfg.input_fft)
        self.duration_predictor = instantiate(cfg.duration_predictor)
        self.pitch_predictor = instantiate(cfg.pitch_predictor)

        self.generator = instantiate(cfg.generator)
        self.multiperioddisc = MultiPeriodDiscriminator()
        self.multiscaledisc = MultiScaleDiscriminator()
        self.mel_val_loss = L1MelLoss()
        self.feat_matching_loss = FeatureMatchingLoss()
        self.disc_loss = DiscriminatorLoss()
        self.gen_loss = GeneratorLoss()

        self.max_token_duration = cfg.max_token_duration

        self.pitch_emb = torch.nn.Conv1d(
            1,
            cfg.symbols_embedding_dim,
            kernel_size=cfg.pitch_embedding_kernel_size,
            padding=int((cfg.pitch_embedding_kernel_size - 1) / 2),
        )

        # Store values precomputed from training data for convenience
        self.register_buffer('pitch_mean', torch.zeros(1))
        self.register_buffer('pitch_std', torch.zeros(1))

        self.loss = BaseFastPitchLoss()

        self.mel_loss_coeff = cfg.mel_loss_coeff

        self.log_train_images = False
        self.logged_real_samples = False
        self._tb_logger = None
        self.hann_window = None
        self.splice_length = cfg.splice_length
        self.sample_rate = cfg.sample_rate
        self.hop_size = cfg.hop_size

    @property
    def tb_logger(self):
        if self._tb_logger is None:
            if self.logger is None and self.logger.experiment is None:
                return None
            tb_logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        tb_logger = logger.experiment
                        break
            self._tb_logger = tb_logger
        return self._tb_logger

    @property
    def parser(self):
        if self._parser is not None:
            return self._parser

        self._parser = parsers.make_parser(
            labels=self._cfg.labels,
            name='en',
            unk_id=-1,
            blank_id=-1,
            do_normalize=True,
            abbreviation_version="fastpitch",
            make_table=False,
        )
        return self._parser

    def parse(self, str_input: str) -> torch.tensor:
        if str_input[-1] not in [".", "!", "?"]:
            str_input = str_input + "."

        tokens = self.parser(str_input)

        x = torch.tensor(tokens).unsqueeze_(0).long().to(self.device)
        return x

    def configure_optimizers(self):
        gen_params = chain(
            self.pitch_emb.parameters(),
            self.encoder.parameters(),
            self.duration_predictor.parameters(),
            self.pitch_predictor.parameters(),
            self.generator.parameters(),
        )
        disc_params = chain(self.multiscaledisc.parameters(),
                            self.multiperioddisc.parameters())
        opt1 = torch.optim.AdamW(disc_params, lr=self._cfg.lr)
        opt2 = torch.optim.AdamW(gen_params, lr=self._cfg.lr)
        num_procs = self._trainer.num_gpus * self._trainer.num_nodes
        num_samples = len(self._train_dl.dataset)
        batch_size = self._train_dl.batch_size
        iter_per_epoch = np.ceil(num_samples / (num_procs * batch_size))
        max_steps = iter_per_epoch * self._trainer.max_epochs
        logging.info(f"MAX STEPS: {max_steps}")
        sch1 = NoamAnnealing(opt1,
                             d_model=1,
                             warmup_steps=1000,
                             max_steps=max_steps,
                             last_epoch=-1)
        sch1_dict = {
            'scheduler': sch1,
            'interval': 'step',
        }
        sch2 = NoamAnnealing(opt2,
                             d_model=1,
                             warmup_steps=1000,
                             max_steps=max_steps,
                             last_epoch=-1)
        sch2_dict = {
            'scheduler': sch2,
            'interval': 'step',
        }
        return [opt1, opt2], [sch1_dict, sch2_dict]

    @typecheck(
        input_types={
            "text": NeuralType(('B', 'T'), TokenIndex()),
            "durs": NeuralType(('B', 'T'), TokenDurationType(), optional=True),
            "pitch": NeuralType(('B', 'T'),
                                RegressionValuesType(),
                                optional=True),
            "pace": NeuralType(optional=True),
            "splice": NeuralType(optional=True),
        },
        output_types={
            "audio": NeuralType(('B', 'T'), MelSpectrogramType()),
            "splices": NeuralType(),
            "log_dur_preds": NeuralType(('B', 'T'), TokenLogDurationType()),
            "pitch_preds": NeuralType(('B', 'T'), RegressionValuesType()),
        },
    )
    def forward(self, *, text, durs=None, pitch=None, pace=1.0, splice=True):
        if self.training:
            assert durs is not None
            assert pitch is not None

        # Input FFT
        enc_out, enc_mask = self.encoder(input=text, conditioning=0)

        # Embedded for predictors
        pred_enc_out, pred_enc_mask = enc_out, enc_mask

        # Predict durations
        log_durs_predicted = self.duration_predictor(pred_enc_out,
                                                     pred_enc_mask)
        durs_predicted = torch.clamp(
            torch.exp(log_durs_predicted) - 1, 0, self.max_token_duration)

        # Predict pitch
        pitch_predicted = self.pitch_predictor(enc_out, enc_mask)
        if pitch is None:
            pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1))
        else:
            pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
        enc_out = enc_out + pitch_emb.transpose(1, 2)

        if durs is None:
            len_regulated, dec_lens = regulate_len(durs_predicted, enc_out,
                                                   pace)
        else:
            len_regulated, dec_lens = regulate_len(durs, enc_out, pace)

        gen_in = len_regulated
        splices = None
        if splice:
            output = []
            splices = []
            for i, sample in enumerate(len_regulated):
                start = np.random.randint(
                    low=0,
                    high=min(int(sample.size(0)), int(dec_lens[i])) -
                    self.splice_length)
                # Splice generated spec
                output.append(sample[start:start + self.splice_length, :])
                splices.append(start)
            gen_in = torch.stack(output)

        output = self.generator(gen_in.transpose(1, 2))

        return output, splices, log_durs_predicted, pitch_predicted

    def training_step(self, batch, batch_idx, optimizer_idx):
        audio, _, text, text_lens, durs, pitch, _ = batch

        # train discriminator
        if optimizer_idx == 0:
            with torch.no_grad():
                audio_pred, splices, _, _ = self(text=text,
                                                 durs=durs,
                                                 pitch=pitch)
                real_audio = []
                for i, splice in enumerate(splices):
                    real_audio.append(
                        audio[i, splice *
                              self.hop_size:(splice + self.splice_length) *
                              self.hop_size])
                real_audio = torch.stack(real_audio).unsqueeze(1)

            real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(
                real_audio, audio_pred)
            real_score_ms, gen_score_ms, _, _ = self.multiscaledisc(
                real_audio, audio_pred)

            loss_mp, loss_mp_real, _ = self.disc_loss(real_score_mp,
                                                      gen_score_mp)
            loss_ms, loss_ms_real, _ = self.disc_loss(real_score_ms,
                                                      gen_score_ms)
            loss_mp /= len(loss_mp_real)
            loss_ms /= len(loss_ms_real)
            loss_disc = loss_mp + loss_ms

            self.log("loss_discriminator", loss_disc, prog_bar=True)
            self.log("loss_discriminator_ms", loss_ms)
            self.log("loss_discriminator_mp", loss_mp)
            return loss_disc

        # train generator
        elif optimizer_idx == 1:
            audio_pred, splices, log_dur_preds, pitch_preds = self(text=text,
                                                                   durs=durs,
                                                                   pitch=pitch)
            real_audio = []
            for i, splice in enumerate(splices):
                real_audio.append(
                    audio[i, splice *
                          self.hop_size:(splice + self.splice_length) *
                          self.hop_size])
            real_audio = torch.stack(real_audio).unsqueeze(1)

            _, dur_loss, pitch_loss = self.loss(
                log_durs_predicted=log_dur_preds,
                pitch_predicted=pitch_preds,
                durs_tgt=durs,
                dur_lens=text_lens,
                pitch_tgt=pitch,
            )

            # Do HiFiGAN generator loss
            audio_length = torch.tensor([
                self.splice_length * self.hop_size
                for _ in range(real_audio.shape[0])
            ]).to(real_audio.device)
            real_spliced_spec, _ = self.melspec_fn(real_audio.squeeze(),
                                                   audio_length)
            pred_spliced_spec, _ = self.melspec_fn(audio_pred.squeeze(),
                                                   audio_length)
            loss_mel = torch.nn.functional.l1_loss(real_spliced_spec,
                                                   pred_spliced_spec)
            loss_mel *= self.mel_loss_coeff
            _, gen_score_mp, _, _ = self.multiperioddisc(
                real_audio, audio_pred)
            _, gen_score_ms, _, _ = self.multiscaledisc(real_audio, audio_pred)
            loss_gen_mp, list_loss_gen_mp = self.gen_loss(gen_score_mp)
            loss_gen_ms, list_loss_gen_ms = self.gen_loss(gen_score_ms)
            loss_gen_mp /= len(list_loss_gen_mp)
            loss_gen_ms /= len(list_loss_gen_ms)
            total_loss = loss_gen_mp + loss_gen_ms + loss_mel
            total_loss += dur_loss
            total_loss += pitch_loss

            self.log(name="loss_gen_mel", value=loss_mel)
            self.log(name="loss_gen_disc", value=loss_gen_mp + loss_gen_ms)
            self.log(name="loss_gen_disc_mp", value=loss_gen_mp)
            self.log(name="loss_gen_disc_ms", value=loss_gen_ms)
            self.log(name="loss_gen_duration", value=dur_loss)
            self.log(name="loss_gen_pitch", value=pitch_loss)

            # Log images to tensorboard
            if self.log_train_images:
                self.log_train_images = False

                if self.logger is not None and self.logger.experiment is not None:
                    self.tb_logger.add_image(
                        "train_mel_target",
                        plot_spectrogram_to_numpy(
                            real_spliced_spec[0].data.cpu().numpy()),
                        self.global_step,
                        dataformats="HWC",
                    )
                    spec_predict = pred_spliced_spec[0].data.cpu().numpy()
                    self.tb_logger.add_image(
                        "train_mel_predicted",
                        plot_spectrogram_to_numpy(spec_predict),
                        self.global_step,
                        dataformats="HWC",
                    )
            self.log(name="loss_gen", prog_bar=True, value=total_loss)
            return total_loss

    def validation_step(self, batch, batch_idx):
        audio, audio_lens, text, _, _, _, _ = batch
        mels, mel_lens = self.preprocessor(audio, audio_lens)

        audio_pred, _, log_durs_predicted, _ = self(text=text,
                                                    durs=None,
                                                    pitch=None,
                                                    splice=False)
        audio_length = torch.sum(torch.clamp(torch.exp(log_durs_predicted - 1),
                                             0),
                                 axis=1)
        audio_pred.squeeze_()
        pred_spec, _ = self.melspec_fn(audio_pred, audio_length)
        loss = self.mel_val_loss(spec_pred=pred_spec,
                                 spec_target=mels,
                                 spec_target_len=mel_lens,
                                 pad_value=-11.52,
                                 transpose=False)

        return {
            "val_loss": loss,
            "audio_target": audio if batch_idx == 0 else None,
            "audio_pred": audio_pred.squeeze() if batch_idx == 0 else None,
        }

    def validation_epoch_end(self, outputs):
        if self.tb_logger is not None:
            _, audio_target, audio_predict = outputs[0].values()
            if not self.logged_real_samples:
                self.tb_logger.add_audio("val_target",
                                         audio_target[0].data.cpu(),
                                         self.global_step, self.sample_rate)
                self.logged_real_samples = True
            audio_predict = audio_predict[0].data.cpu()
            self.tb_logger.add_audio("val_pred", audio_predict,
                                     self.global_step, self.sample_rate)
        avg_loss = torch.stack([
            x['val_loss'] for x in outputs
        ]).mean()  # This reduces across batches, not workers!
        self.log('val_loss', avg_loss, sync_dist=True)

        self.log_train_images = True

    def _loader(self, cfg):
        dataset = FastPitchDataset(
            manifest_filepath=cfg['manifest_filepath'],
            parser=self.parser,
            sample_rate=cfg['sample_rate'],
            int_values=cfg.get('int_values', False),
            max_duration=cfg.get('max_duration', None),
            min_duration=cfg.get('min_duration', None),
            max_utts=cfg.get('max_utts', 0),
            trim=cfg.get('trim_silence', True),
        )

        return torch.utils.data.DataLoader(
            dataset=dataset,
            batch_size=cfg['batch_size'],
            collate_fn=dataset.collate_fn,
            drop_last=cfg.get('drop_last', True),
            shuffle=cfg['shuffle'],
            num_workers=cfg.get('num_workers', 16),
        )

    def setup_training_data(self, cfg):
        self._train_dl = self._loader(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self._loader(cfg)

    def setup_test_data(self, cfg):
        """Omitted."""
        pass

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        # model = PretrainedModelInfo(
        #     pretrained_model_name="",
        #     location="",
        #     description="",
        #     class_=cls,
        # )
        # list_of_models.append(model)

        return list_of_models

    def convert_text_to_waveform(self, *, tokens):
        """
        Accepts tokens returned from self.parse() and returns a list of tensors. Note: The tensors in the list can have
        different lengths.
        """
        self.eval()
        audio, _, log_dur_pred, _ = self(text=tokens, splice=False)
        audio = audio.squeeze()
        durations = torch.sum(
            torch.clamp(
                torch.exp(log_dur_pred) - 1, 0, self.max_token_duration), 1)
        audio_list = []
        for i, sample in enumerate(audio):
            audio_list.append(sample[:durations[i] * self.hop_size])

        return audio_list
コード例 #29
0
 def input_types(self):
     return {
         "x_mag": NeuralType(('B', 'T', 'D'), SpectrogramType()),
         "y_mag": NeuralType(('B', 'T', 'D'), SpectrogramType()),
         "input_lengths": NeuralType(('B'), LengthsType(), optional=True),
     }
コード例 #30
0
ファイル: hifigan_modules.py プロジェクト: quuhua911/NeMo
 def input_types(self):
     return {
         "y": NeuralType(('B', 'S', 'T'), AudioSignal()),
         "y_hat": NeuralType(('B', 'S', 'T'), AudioSignal()),
     }