コード例 #1
0
def bids(variable_ids, price_bids, unit_info):
    """Create the cost coefficients of energy in bids in the objective function.

    This function defines the cost associated with each decision variable that represents a unit's energy bid. Costs are
    are with reference to the regional node.
    """
    # If no service column is provided assume bids are for energy.
    if 'service' not in price_bids.columns:
        price_bids['service'] = 'energy'

    # Get the list of columns that are bid bands.
    bid_bands = [
        col for col in price_bids.columns if col not in ['unit', 'service']
    ]
    price_bids = hf.stack_columns(price_bids,
                                  cols_to_keep=['unit', 'service'],
                                  cols_to_stack=bid_bands,
                                  type_name='capacity_band',
                                  value_name='cost')
    # Match bid cost with existing variable ids
    objective_function = pd.merge(variable_ids,
                                  price_bids,
                                  how='inner',
                                  on=['unit', 'service', 'capacity_band'])
    objective_function = pd.merge(objective_function,
                                  unit_info.loc[:, ['unit', 'dispatch_type']],
                                  how='inner',
                                  on=['unit'])
    objective_function['cost'] = np.where(
        (objective_function['dispatch_type'] == 'load') &
        (objective_function['service'] == 'energy'),
        -1.0 * objective_function['cost'], objective_function['cost'])
    return objective_function
コード例 #2
0
    def get_dispatch_comparison(self):
        DISPATCHLOAD = self.inputs_manager.DISPATCHLOAD.get_data(self.interval)
        bounds = DISPATCHLOAD.loc[:, ['DUID'] + self.services]
        bounds.columns = ['unit'] + self.services
        bounds = hf.stack_columns(bounds,
                                  cols_to_keep=['unit'],
                                  cols_to_stack=self.services,
                                  type_name='service',
                                  value_name='dispatched')
        bounds['service'] = bounds['service'].apply(
            lambda x: self.service_name_mapping[x])

        nempy_dispatch = self.market.get_unit_dispatch()
        comp = pd.merge(bounds,
                        nempy_dispatch,
                        'inner',
                        on=['unit', 'service'])
        comp['diff'] = comp['dispatch'] - comp['dispatched']
        comp = pd.merge(comp,
                        self.market._unit_info.loc[:,
                                                   ['unit', 'dispatch_type']],
                        on='unit')
        comp['diff'] = np.where(
            (comp['dispatch_type'] == 'load') & (comp['service'] == 'energy'),
            comp['diff'] * -1, comp['diff'])
        return comp
コード例 #3
0
    def all_dispatch_units_and_service_have_decision_variables(
            self, wiggle_room=0.001):
        DISPATCHLOAD = self.inputs_manager.DISPATCHLOAD.get_data(self.interval)

        bounds = DISPATCHLOAD.loc[:, ['DUID'] + self.services]
        bounds.columns = ['unit'] + self.services

        bounds = hf.stack_columns(bounds,
                                  cols_to_keep=['unit'],
                                  cols_to_stack=self.services,
                                  type_name='service',
                                  value_name='dispatched')

        bounds['service'] = bounds['service'].apply(
            lambda x: self.service_name_mapping[x])

        bounds = bounds[bounds['dispatched'] > 0.001]

        decision_variables = self.market._decision_variables['bids'].copy()

        decision_variables = decision_variables.groupby(
            ['unit', 'service'], as_index=False).first()

        decision_variables = pd.merge(bounds,
                                      decision_variables,
                                      how='left',
                                      on=['unit', 'service'])

        decision_variables[
            'not_missing'] = ~decision_variables['variable_id'].isna()

        decision_variables = decision_variables.sort_values('not_missing')

        return decision_variables['not_missing'].all()
コード例 #4
0
    def set_unit_dispatch_to_historical_values(self, wiggle_room=0.001):
        DISPATCHLOAD = self.inputs_manager.DISPATCHLOAD.get_data(self.interval)

        bounds = DISPATCHLOAD.loc[:, ['DUID'] + self.services]
        bounds.columns = ['unit'] + self.services

        bounds = hf.stack_columns(bounds,
                                  cols_to_keep=['unit'],
                                  cols_to_stack=self.services,
                                  type_name='service',
                                  value_name='dispatched')

        bounds['service'] = bounds['service'].apply(
            lambda x: self.service_name_mapping[x])

        decision_variables = self.market._decision_variables['bids'].copy()

        decision_variables = pd.merge(decision_variables,
                                      bounds,
                                      on=['unit', 'service'])

        decision_variables_first_bid = decision_variables.groupby(
            ['unit', 'service'], as_index=False).first()

        def last_bids(df):
            return df.iloc[1:]

        decision_variables_remaining_bids = \
            decision_variables.groupby(['unit', 'service'], as_index=False).apply(last_bids)

        decision_variables_first_bid[
            'lower_bound'] = decision_variables_first_bid[
                'dispatched'] - wiggle_room
        decision_variables_first_bid[
            'upper_bound'] = decision_variables_first_bid[
                'dispatched'] + wiggle_room
        decision_variables_first_bid['lower_bound'] = np.where(
            decision_variables_first_bid['lower_bound'] < 0.0, 0.0,
            decision_variables_first_bid['lower_bound'])
        decision_variables_first_bid['upper_bound'] = np.where(
            decision_variables_first_bid['upper_bound'] < 0.0, 0.0,
            decision_variables_first_bid['upper_bound'])
        decision_variables_remaining_bids['lower_bound'] = 0.0
        decision_variables_remaining_bids['upper_bound'] = 0.0

        decision_variables = pd.concat(
            [decision_variables_first_bid, decision_variables_remaining_bids])

        self.market._decision_variables['bids'] = decision_variables
コード例 #5
0
    def get_price_comparison(self):
        energy_prices = self.market.get_energy_prices()
        energy_prices['time'] = self.interval
        energy_prices['service'] = 'energy'
        fcas_prices = self.market.get_fcas_prices()
        fcas_prices['time'] = self.interval
        prices = pd.concat([energy_prices, fcas_prices])

        price_to_service = {
            'ROP': 'energy',
            'RAISE6SECROP': 'raise_6s',
            'RAISE60SECROP': 'raise_60s',
            'RAISE5MINROP': 'raise_5min',
            'RAISEREGROP': 'raise_reg',
            'LOWER6SECROP': 'lower_6s',
            'LOWER60SECROP': 'lower_60s',
            'LOWER5MINROP': 'lower_5min',
            'LOWERREGROP': 'lower_reg'
        }
        price_columns = list(price_to_service.keys())
        historical_prices = self.inputs_manager.DISPATCHPRICE.get_data(
            self.interval)
        historical_prices = hf.stack_columns(
            historical_prices,
            cols_to_keep=['SETTLEMENTDATE', 'REGIONID'],
            cols_to_stack=price_columns,
            type_name='service',
            value_name='RRP')
        historical_prices['service'] = historical_prices['service'].apply(
            lambda x: price_to_service[x])
        historical_prices = historical_prices.loc[:, [
            'SETTLEMENTDATE', 'REGIONID', 'service', 'RRP'
        ]]
        historical_prices.columns = ['time', 'region', 'service', 'hist_price']
        prices = pd.merge(prices,
                          historical_prices,
                          on=['time', 'region', 'service'])
        prices['error'] = prices['price'] - prices['hist_price']
        return prices
コード例 #6
0
def create(definitions, next_variable_id):
    """Create decision variables, and their mapping to constraints. For modeling interconnector flows. As DataFrames.

    Examples
    --------
    Definitions for two interconnectors, one called A, that nominal flows from region X to region Y, note A can flow in
    both directions because of the way max and min are defined. The interconnector B nominal flows from Y to Z, but can
    only flow in the forward direction.

    >>> pd.options.display.width = None

    >>> inter_definitions = pd.DataFrame({
    ...   'interconnector': ['A', 'B'],
    ...   'link': ['A', 'B'],
    ...   'from_region': ['X', 'Y'],
    ...   'to_region': ['Y', 'Z'],
    ...   'max': [100.0, 400.0],
    ...   'min': [-100.0, 50.0],
    ...   'generic_constraint_factor': [1, 1],
    ...   'from_region_loss_factor': [0.9, 1.0],
    ...   'to_region_loss_factor': [1.0, 1.1]})

    >>> print(inter_definitions)
      interconnector link from_region to_region    max    min  generic_constraint_factor  from_region_loss_factor  to_region_loss_factor
    0              A    A           X         Y  100.0 -100.0                          1                      0.9                    1.0
    1              B    B           Y         Z  400.0   50.0                          1                      1.0                    1.1

    Start creating new variable ids from 0.

    >>> next_variable_id = 0

    Run the function and print results.

    >>> decision_variables, constraint_map = create(inter_definitions, next_variable_id)

    >>> print(decision_variables)
      interconnector link  variable_id  lower_bound  upper_bound        type  generic_constraint_factor
    0              A    A            0       -100.0        100.0  continuous                          1
    1              B    B            1         50.0        400.0  continuous                          1

    >>> print(constraint_map)
       variable_id interconnector link region service  coefficient
    0            0              A    A      Y  energy          1.0
    1            1              B    B      Z  energy          1.1
    2            0              A    A      X  energy         -0.9
    3            1              B    B      Y  energy         -1.0

    """

    # Create a variable_id for each interconnector.
    decision_variables = hf.save_index(definitions, 'variable_id',
                                       next_variable_id)

    # Create two entries in the constraint_map for each interconnector. This means the variable will be mapped to the
    # demand constraint of both connected regions.
    constraint_map = hf.stack_columns(
        decision_variables,
        ['variable_id', 'interconnector', 'link', 'max', 'min'],
        ['to_region', 'from_region'], 'direction', 'region')
    loss_factors = hf.stack_columns(
        decision_variables, ['variable_id'],
        ['from_region_loss_factor', 'to_region_loss_factor'], 'direction',
        'loss_factor')
    loss_factors['direction'] = loss_factors['direction'].apply(
        lambda x: x.replace('_loss_factor', ''))
    constraint_map = pd.merge(constraint_map,
                              loss_factors,
                              on=['variable_id', 'direction'])

    # Define decision variable attributes.
    decision_variables['type'] = 'continuous'
    decision_variables = decision_variables.loc[:, [
        'interconnector', 'link', 'variable_id', 'min', 'max', 'type',
        'generic_constraint_factor'
    ]]
    decision_variables.columns = [
        'interconnector', 'link', 'variable_id', 'lower_bound', 'upper_bound',
        'type', 'generic_constraint_factor'
    ]

    # Set positive coefficient for the to_region so the interconnector flowing in the nominal direction helps meet the
    # to_region demand constraint. Negative for the from_region, same logic.
    constraint_map['coefficient'] = np.where(
        constraint_map['direction'] == 'to_region',
        1.0 * constraint_map['loss_factor'],
        -1.0 * constraint_map['loss_factor'])
    constraint_map['service'] = 'energy'
    constraint_map = constraint_map.loc[:, [
        'variable_id', 'interconnector', 'link', 'region', 'service',
        'coefficient'
    ]]

    return decision_variables, constraint_map
コード例 #7
0
    def do_fcas_availabilities_match_historical(self):
        DISPATCHLOAD = self.inputs_manager.DISPATCHLOAD.get_data(self.interval)
        availabilities = [
            'RAISE6SECACTUALAVAILABILITY', 'RAISE60SECACTUALAVAILABILITY',
            'RAISE5MINACTUALAVAILABILITY', 'RAISEREGACTUALAVAILABILITY',
            'LOWER6SECACTUALAVAILABILITY', 'LOWER60SECACTUALAVAILABILITY',
            'LOWER5MINACTUALAVAILABILITY', 'LOWERREGACTUALAVAILABILITY'
        ]

        availabilities_mapping = {
            'RAISEREGACTUALAVAILABILITY': 'raise_reg',
            'LOWERREGACTUALAVAILABILITY': 'lower_reg',
            'RAISE6SECACTUALAVAILABILITY': 'raise_6s',
            'RAISE60SECACTUALAVAILABILITY': 'raise_60s',
            'RAISE5MINACTUALAVAILABILITY': 'raise_5min',
            'LOWER6SECACTUALAVAILABILITY': 'lower_6s',
            'LOWER60SECACTUALAVAILABILITY': 'lower_60s',
            'LOWER5MINACTUALAVAILABILITY': 'lower_5min'
        }

        bounds = DISPATCHLOAD.loc[:, ['DUID'] + availabilities]
        bounds.columns = ['unit'] + availabilities

        availabilities = hf.stack_columns(bounds,
                                          cols_to_keep=['unit'],
                                          cols_to_stack=availabilities,
                                          type_name='service',
                                          value_name='availability')

        bounds = DISPATCHLOAD.loc[:, ['DUID'] + self.services]
        bounds.columns = ['unit'] + self.services

        bounds = hf.stack_columns(bounds,
                                  cols_to_keep=['unit'],
                                  cols_to_stack=self.services,
                                  type_name='service',
                                  value_name='dispatched')

        bounds['service'] = bounds['service'].apply(
            lambda x: self.service_name_mapping[x])

        availabilities['service'] = availabilities['service'].apply(
            lambda x: availabilities_mapping[x])

        availabilities = pd.merge(availabilities,
                                  bounds,
                                  on=['unit', 'service'])

        availabilities = availabilities[~(
            availabilities['dispatched'] -
            0.001 > availabilities['availability'])]

        output = self.market.get_fcas_availability()
        output.columns = ['unit', 'service', 'availability_measured']

        availabilities = pd.merge(availabilities,
                                  output,
                                  'left',
                                  on=['unit', 'service'])

        availabilities['availability_measured'] = availabilities[
            'availability_measured'].fillna(0)

        availabilities['error'] = availabilities[
            'availability_measured'] - availabilities['availability']

        availabilities['match'] = availabilities['error'].abs() < 0.1
        availabilities = availabilities.sort_values('match')
        return availabilities
コード例 #8
0
def bids(volume_bids, unit_info, next_variable_id):
    """Create decision variables that correspond to unit bids, for use in the linear program.

    This function defines the needed parameters for each variable, with a lower bound equal to zero, an upper bound
    equal to the bid volume, and a variable type of continuous. There is no limit on the number of bid bands and each
    column in the capacity_bids DataFrame other than unit is treated as a bid band. Volume bids should be positive.
    numeric values only.

    Examples
    --------

    >>> import pandas

    A set of capacity bids.

    >>> volume_bids = pd.DataFrame({
    ...   'unit': ['A', 'B'],
    ...   '1': [10.0, 50.0],
    ...   '2': [20.0, 30.0]})

    The locations of the units.

    >>> unit_info = pd.DataFrame({
    ...   'unit': ['A', 'B'],
    ...   'region': ['NSW', 'X'],
    ...   'dispatch_type': ['generator', 'load']})

    >>> next_variable_id = 0

    Create the decision variables and their mapping into constraints.

    >>> decision_variables, unit_level_constraint_map, regional_constraint_map = bids(
    ...   volume_bids, unit_info, next_variable_id)

    >>> print(decision_variables)
      unit capacity_band service  variable_id  lower_bound  upper_bound        type
    0    A             1  energy            0          0.0         10.0  continuous
    1    A             2  energy            1          0.0         20.0  continuous
    2    B             1  energy            2          0.0         50.0  continuous
    3    B             2  energy            3          0.0         30.0  continuous

    >>> print(unit_level_constraint_map)
       variable_id unit service  coefficient
    0            0    A  energy          1.0
    1            1    A  energy          1.0
    2            2    B  energy          1.0
    3            3    B  energy          1.0

    >>> print(regional_constraint_map)
       variable_id region service  coefficient
    0            0    NSW  energy          1.0
    1            1    NSW  energy          1.0
    2            2      X  energy         -1.0
    3            3      X  energy         -1.0

    Parameters
    ----------
    volume_bids : pd.DataFrame
        Bids by unit, in MW, can contain up to n bid bands.

        ========  ===============================================================
        Columns:  Description:
        unit      unique identifier of a dispatch unit (as `str`)
        service   the service being provided, optional, if missing energy assumed
                  (as `str`)
        1         bid volume in the 1st band, in MW (as `float`)
        2         bid volume in the 2nd band, in MW (as `float`)
        n         bid volume in the nth band, in MW (as `float`)
        ========  ===============================================================

    unit_info : pd.DataFrame
        The region each unit is located in.

        ========  ======================================================
        Columns:  Description:
        unit      unique identifier of a dispatch unit (as `str`)
        region    unique identifier of a market region (as `str`)
        ========  ======================================================

    next_variable_id : int
        The next integer to start using for variables ids.

    Returns
    -------
    decision_variables : pd.DataFrame

        =============  ===============================================================
        Columns:       Description:
        unit           unique identifier of a dispatch unit (as `str`)
        capacity_band  the bid band of the variable (as `str`)
        variable_id    the id of the variable (as `int`)
        lower_bound    the lower bound of the variable, is zero for bids (as `np.float64`)
        upper_bound    the upper bound of the variable, the volume bid (as `np.float64`)
        type           the type of variable, is continuous for bids  (as `str`)
        =============  ===============================================================

    unit_level_constraint_map : pd.DataFrame

        =============  =============================================================================
        Columns:       Description:
        variable_id    the id of the variable (as `np.int64`)
        unit           the unit level constraints the variable should map to (as `str`)
        service        the service type of the constraints the variables should map to (as `str`)
        coefficient    the upper bound of the variable, the volume bid (as `np.float64`)
        =============  =============================================================================

    regional_constraint_map : pd.DataFrame

        =============  =============================================================================
        Columns:       Description:
        variable_id    the id of the variable (as `np.int64`)
        region         the regional constraints the variable should map to (as `str`)
        service        the service type of the constraints the variables should map to (as `str`)
        coefficient    the upper bound of the variable, the volume bid (as `np.float64`)
        =============  =============================================================================
    """
    # If no service column is provided assume bids are for energy.
    if 'service' not in volume_bids.columns:
        volume_bids['service'] = 'energy'

    # Get a list of all the columns that contain volume bids.
    bid_bands = [
        col for col in volume_bids.columns if col not in ['unit', 'service']
    ]
    # Reshape the table so each bid band is on it own row.
    decision_variables = hf.stack_columns(volume_bids,
                                          cols_to_keep=['unit', 'service'],
                                          cols_to_stack=bid_bands,
                                          type_name='capacity_band',
                                          value_name='upper_bound')
    decision_variables = decision_variables[
        decision_variables['upper_bound'] >= 0.0001]
    # Group units together in the decision variable table.
    decision_variables = decision_variables.sort_values(
        ['unit', 'capacity_band'])
    # Create a unique identifier for each decision variable.
    decision_variables = hf.save_index(decision_variables, 'variable_id',
                                       next_variable_id)
    # The lower bound of bidding decision variables will always be zero.
    decision_variables['lower_bound'] = 0.0
    decision_variables['type'] = 'continuous'

    constraint_map = decision_variables.loc[:,
                                            ['variable_id', 'unit', 'service']]
    constraint_map = pd.merge(
        constraint_map,
        unit_info.loc[:, ['unit', 'region', 'dispatch_type']],
        'inner',
        on='unit')
    regional_constraint_map = constraint_map.loc[:, [
        'variable_id', 'region', 'service', 'dispatch_type'
    ]]
    regional_constraint_map['coefficient'] = np.where(
        (regional_constraint_map['dispatch_type'] == 'load') &
        (regional_constraint_map['service'] == 'energy'), -1.0, 1.0)
    regional_constraint_map = regional_constraint_map.drop('dispatch_type',
                                                           axis=1)
    unit_level_constraint_map = constraint_map.loc[:, [
        'variable_id', 'unit', 'service'
    ]]
    unit_level_constraint_map['coefficient'] = 1.0

    decision_variables = \
        decision_variables.loc[:, ['unit', 'capacity_band', 'service', 'variable_id', 'lower_bound', 'upper_bound',
                                   'type']]

    return decision_variables, unit_level_constraint_map, regional_constraint_map