コード例 #1
0
def build_decoders(model, conn, rng):
    # Copied from older version of Nengo
    encoders = model.params[conn.pre_obj].encoders
    gain = model.params[conn.pre_obj].gain
    bias = model.params[conn.pre_obj].bias

    eval_points = connection_b.get_eval_points(model, conn, rng)

    try:
        targets = connection_b.get_targets(conn, eval_points)
    except:
        # nengo <= 2.3.0
        targets = connection_b.get_targets(model, conn, eval_points)

    x = np.dot(eval_points, encoders.T / conn.pre_obj.radius)
    E = None
    if conn.solver.weights:
        E = model.params[conn.post_obj].scaled_encoders.T[conn.post_slice]
        # include transform in solved weights
        targets = connection_b.multiply(targets, conn.transform.T)

    try:
        wrapped_solver = model.decoder_cache.wrap_solver(
            connection_b.solve_for_decoders)
        try:
            decoders, solver_info = wrapped_solver(conn,
                                                   gain,
                                                   bias,
                                                   x,
                                                   targets,
                                                   rng=rng,
                                                   E=E)
        except TypeError:
            # fallback for older nengo versions
            decoders, solver_info = wrapped_solver(conn.solver,
                                                   conn.pre_obj.neuron_type,
                                                   gain,
                                                   bias,
                                                   x,
                                                   targets,
                                                   rng=rng,
                                                   E=E)
    except BuildError:
        raise BuildError(
            "Building %s: 'activities' matrix is all zero for %s. "
            "This is because no evaluation points fall in the firing "
            "ranges of any neurons." % (conn, conn.pre_obj))

    return eval_points, decoders, solver_info
コード例 #2
0
def build_decoders(model, conn, rng):
    # Copied from older version of Nengo
    encoders = model.params[conn.pre_obj].encoders
    gain = model.params[conn.pre_obj].gain
    bias = model.params[conn.pre_obj].bias

    eval_points = connection_b.get_eval_points(model, conn, rng)

    try:
        targets = connection_b.get_targets(conn, eval_points)
    except:
        # nengo <= 2.3.0
        targets = connection_b.get_targets(model, conn, eval_points)

    x = np.dot(eval_points, encoders.T / conn.pre_obj.radius)
    E = None
    if conn.solver.weights:
        E = model.params[conn.post_obj].scaled_encoders.T[conn.post_slice]
        # include transform in solved weights
        targets = connection_b.multiply(targets, conn.transform.T)

    try:
        wrapped_solver = model.decoder_cache.wrap_solver(
            connection_b.solve_for_decoders
        )
        try:
            decoders, solver_info = wrapped_solver(
                conn, gain, bias, x, targets,
                rng=rng, E=E)
        except TypeError:
            # fallback for older nengo versions
            decoders, solver_info = wrapped_solver(
                conn.solver, conn.pre_obj.neuron_type, gain, bias, x, targets,
                rng=rng, E=E)
    except BuildError:
        raise BuildError(
            "Building %s: 'activities' matrix is all zero for %s. "
            "This is because no evaluation points fall in the firing "
            "ranges of any neurons." % (conn, conn.pre_obj))

    return eval_points, decoders, solver_info
コード例 #3
0
ファイル: connection.py プロジェクト: trigrass2/nengo-loihi
def build_decoders(model, conn, rng, sampled_transform):
    # Copied from Nengo, except where noted below

    encoders = model.params[conn.pre_obj].encoders
    gain = model.params[conn.pre_obj].gain
    bias = model.params[conn.pre_obj].bias

    eval_points = get_eval_points(model, conn, rng)
    targets = get_targets(conn, eval_points)

    if conn.solver.weights and not conn.solver.compositional:
        # solver is solving for the whole weight matrix, so apply
        # transform/encoders to targets

        # CHANGE: backwards compatibility with nengo<=2.8.0
        # if not isinstance(conn.transform, Dense):
        #     raise BuildError(
        #         "Non-compositional solvers only work with Dense transforms")
        # transform = conn.transform.sample(rng=rng)
        # targets = np.dot(targets, transform.T)
        if nengo_transforms is not None and not isinstance(
                conn.transform, nengo_transforms.Dense):  # pragma: no cover
            raise BuildError(
                "Non-compositional solvers only work with Dense transforms")
        targets = np.dot(targets, sampled_transform.T)

        # weight solvers only allowed on ensemble->ensemble connections
        assert isinstance(conn.post_obj, Ensemble)
        post_enc = model.params[conn.post_obj].scaled_encoders
        targets = np.dot(targets, post_enc.T[conn.post_slice])

    x = np.dot(eval_points, encoders.T / conn.pre_obj.radius)

    # CHANGE: we pass `dt` to `solve_for_decoders`,
    # and do not support the decoder cache.
    # wrapped_solver = (model.decoder_cache.wrap_solver(solve_for_decoders)
    #                   if model.seeded[conn] else solve_for_decoders)
    # decoders, solver_info = wrapped_solver(
    #     conn, gain, bias, x, targets, rng=rng)
    decoders, solver_info = solve_for_decoders(conn,
                                               gain,
                                               bias,
                                               x,
                                               targets,
                                               rng=rng,
                                               dt=model.dt)

    return eval_points, decoders.T, solver_info
コード例 #4
0
def eval_point_decoding(conn, sim, eval_points=None):
    """Get the targets and actual decoded values for a set of eval points.

    This function evaluates the static decoding (i.e. using the neuron type's
    ``rates`` function) of a connection for a given set of evaluation points.

    Parameters
    ----------
    conn : Connection
        The Connection to evaluate the decoding of.
    sim : Simulator
        A Nengo simulator storing the built connection.
    eval_points : array_like (N, E) (optional)
        An N x E array of evaluation points to evaluate the decoding for, where
        N is the number of points and E is the dimensionality of the input
        ensemble (i.e. ``conn.size_in``). If None (default), use the connection's
        training evaluation points.

    Returns
    -------
    eval_points : ndarray (N, E)
        A shallow copy of the evaluation points used. E is the dimensionality
        of the connection input ensemble (i.e. ``conn.size_in``).
    targets : ndarray (N, D)
        The target function value at each evaluation point.
    decoded : ndarray (N, D)
        The decoded function value at each evaluation point.
    """
    # pylint: disable=import-outside-toplevel
    # note: these are imported here to avoid circular imports
    from nengo import rc
    from nengo.builder.ensemble import get_activities
    from nengo.builder.connection import get_targets

    dtype = rc.float_dtype

    if eval_points is None:
        eval_points = sim.data[conn].eval_points
    else:
        eval_points = np.asarray(eval_points, dtype=dtype)

    ens = conn.pre_obj
    weights = sim.data[conn].weights
    activities = get_activities(sim.data[ens], ens, eval_points)
    decoded = np.dot(activities, weights.T)
    targets = get_targets(conn, eval_points, dtype=dtype)
    return eval_points, targets, decoded
コード例 #5
0
ファイル: connection.py プロジェクト: schottkey7/nengo
def eval_point_decoding(conn, sim, eval_points=None):
    """Get the targets and actual decoded values for a set of eval points.

    This function evaluates the static decoding (i.e. using the neuron type's
    `rates` function) of a connection for a given set of evaluation points.

    Parameters
    ----------
    conn : Connection
        The Connection to evaluate the decoding of.
    sim : Simulator
        A Nengo simulator storing the built connection.
    eval_points : array_like (N, E) (optional)
        An N x E array of evaluation points to evaluate the decoding for, where
        N is the number of points and E is the dimensionality of the input
        ensemble (i.e. `conn.size_in`). If None (default), use the connection's
        training evaluation points.

    Returns
    -------
    eval_points : ndarray (N, E)
        A shallow copy of the evaluation points used. E is the dimensionality
        of the connection input ensemble (i.e. `conn.size_in`).
    targets : ndarray (N, D)
        The target function value at each evaluation point.
    decoded : ndarray (N, D)
        The decoded function value at each evaluation point.
    """
    from nengo.builder.ensemble import get_activities
    from nengo.builder.connection import get_targets

    if eval_points is None:
        eval_points = sim.data[conn].eval_points
    else:
        eval_points = np.asarray(eval_points)

    decoders = sim.data[conn].decoders
    if decoders is None:
        raise ValueError("Connection must have decoders")

    activities = get_activities(sim.model, conn.pre_obj, eval_points)
    decoded = np.dot(activities, decoders.T)
    targets = get_targets(sim.model, conn, eval_points)
    return eval_points, targets, decoded
コード例 #6
0
ファイル: connection.py プロジェクト: LittileBee/nengo
def eval_point_decoding(conn, sim, eval_points=None):
    """Get the targets and actual decoded values for a set of eval points.

    This function evaluates the static decoding (i.e. using the neuron type's
    `rates` function) of a connection for a given set of evaluation points.

    Parameters
    ----------
    conn : Connection
        The Connection to evaluate the decoding of.
    sim : Simulator
        A Nengo simulator storing the built connection.
    eval_points : array_like (N, E) (optional)
        An N x E array of evaluation points to evaluate the decoding for, where
        N is the number of points and E is the dimensionality of the input
        ensemble (i.e. `conn.size_in`). If None (default), use the connection's
        training evaluation points.

    Returns
    -------
    eval_points : ndarray (N, E)
        A shallow copy of the evaluation points used. E is the dimensionality
        of the connection input ensemble (i.e. `conn.size_in`).
    targets : ndarray (N, D)
        The target function value at each evaluation point.
    decoded : ndarray (N, D)
        The decoded function value at each evaluation point.
    """
    from nengo.builder.ensemble import get_activities
    from nengo.builder.connection import get_targets

    if eval_points is None:
        eval_points = sim.data[conn].eval_points
    else:
        eval_points = np.asarray(eval_points)

    decoders = sim.data[conn].decoders
    if decoders is None:
        raise ValueError("Connection must have decoders")

    activities = get_activities(sim.model, conn.pre_obj, eval_points)
    decoded = np.dot(activities, decoders.T)
    targets = get_targets(sim.model, conn, eval_points)
    return eval_points, targets, decoded