コード例 #1
0
class Ensemble(NengoObject):
    """A group of neurons that collectively represent a vector.

    Parameters
    ----------
    n_neurons : int
        The number of neurons.
    dimensions : int
        The number of representational dimensions.

    radius : int, optional
        The representational radius of the ensemble.
    encoders : Distribution or (n_neurons, dimensions) array_like, optional
        The encoders used to transform from representational space
        to neuron space. Each row is a neuron's encoder; each column is a
        representational dimension.
    intercepts : Distribution or (n_neurons,) array_like, optional
        The point along each neuron's encoder where its activity is zero. If
        ``e`` is the neuron's encoder, then the activity will be zero when
        ``dot(x, e) <= c``, where ``c`` is the given intercept.
    max_rates : Distribution or (n_neurons,) array_like, optional
        The activity of each neuron when the input signal ``x`` is magnitude 1
        and aligned with that neuron's encoder ``e``;
        i.e., when ``dot(x, e) = 1``.
    eval_points : Distribution or (n_eval_points, dims) array_like, optional
        The evaluation points used for decoder solving, spanning the interval
        (-radius, radius) in each dimension, or a distribution from which
        to choose evaluation points.
    n_eval_points : int, optional
        The number of evaluation points to be drawn from the ``eval_points``
        distribution. If None, then a heuristic is used to determine
        the number of evaluation points.
    neuron_type : `~nengo.neurons.NeuronType`, optional
        The model that simulates all neurons in the ensemble
        (see `~nengo.neurons.NeuronType`).
    gain : Distribution or (n_neurons,) array_like
        The gains associated with each neuron in the ensemble. If None, then
        the gain will be solved for using ``max_rates`` and ``intercepts``.
    bias : Distribution or (n_neurons,) array_like
        The biases associated with each neuron in the ensemble. If None, then
        the gain will be solved for using ``max_rates`` and ``intercepts``.
    noise : Process, optional
        Random noise injected directly into each neuron in the ensemble
        as current. A sample is drawn for each individual neuron on
        every simulation step.
    normalize_encoders : bool, optional
        Indicates whether the encoders should be normalized.
    label : str, optional
        A name for the ensemble. Used for debugging and visualization.
    seed : int, optional
        The seed used for random number generation.

    Attributes
    ----------
    bias : Distribution or (n_neurons,) array_like or None
        The biases associated with each neuron in the ensemble.
    dimensions : int
        The number of representational dimensions.
    encoders : Distribution or (n_neurons, dimensions) array_like
        The encoders, used to transform from representational space
        to neuron space. Each row is a neuron's encoder, each column is a
        representational dimension.
    eval_points : Distribution or (n_eval_points, dims) array_like
        The evaluation points used for decoder solving, spanning the interval
        (-radius, radius) in each dimension, or a distribution from which
        to choose evaluation points.
    gain : Distribution or (n_neurons,) array_like or None
        The gains associated with each neuron in the ensemble.
    intercepts : Distribution or (n_neurons) array_like or None
        The point along each neuron's encoder where its activity is zero. If
        ``e`` is the neuron's encoder, then the activity will be zero when
        ``dot(x, e) <= c``, where ``c`` is the given intercept.
    label : str or None
        A name for the ensemble. Used for debugging and visualization.
    max_rates : Distribution or (n_neurons,) array_like or None
        The activity of each neuron when ``dot(x, e) = 1``,
        where ``e`` is the neuron's encoder.
    n_eval_points : int or None
        The number of evaluation points to be drawn from the ``eval_points``
        distribution. If None, then a heuristic is used to determine
        the number of evaluation points.
    n_neurons : int or None
        The number of neurons.
    neuron_type : NeuronType
        The model that simulates all neurons in the ensemble
        (see ``nengo.neurons``).
    noise : Process or None
        Random noise injected directly into each neuron in the ensemble
        as current. A sample is drawn for each individual neuron on
        every simulation step.
    radius : int
        The representational radius of the ensemble.
    seed : int or None
        The seed used for random number generation.
    """

    probeable = ("decoded_output", "input", "scaled_encoders")

    n_neurons = IntParam("n_neurons", low=1)
    dimensions = IntParam("dimensions", low=1)
    radius = NumberParam("radius", default=1.0, low=1e-10)
    encoders = DistOrArrayParam(
        "encoders",
        default=ScatteredHypersphere(surface=True),
        sample_shape=("n_neurons", "dimensions"),
    )
    intercepts = DistOrArrayParam(
        "intercepts",
        default=Uniform(-1.0, 0.9),
        optional=True,
        sample_shape=("n_neurons",),
    )
    max_rates = DistOrArrayParam(
        "max_rates",
        default=Uniform(200, 400),
        optional=True,
        sample_shape=("n_neurons",),
    )
    eval_points = DistOrArrayParam(
        "eval_points", default=ScatteredHypersphere(), sample_shape=("*", "dimensions")
    )
    n_eval_points = IntParam("n_eval_points", default=None, optional=True)
    neuron_type = NeuronTypeParam("neuron_type", default=LIF())
    gain = DistOrArrayParam(
        "gain", default=None, optional=True, sample_shape=("n_neurons",)
    )
    bias = DistOrArrayParam(
        "bias", default=None, optional=True, sample_shape=("n_neurons",)
    )
    noise = ProcessParam("noise", default=None, optional=True)
    normalize_encoders = BoolParam("normalize_encoders", default=True, optional=True)

    _param_init_order = ["n_neurons", "dimensions"]

    def __init__(
        self,
        n_neurons,
        dimensions,
        radius=Default,
        encoders=Default,
        intercepts=Default,
        max_rates=Default,
        eval_points=Default,
        n_eval_points=Default,
        neuron_type=Default,
        gain=Default,
        bias=Default,
        noise=Default,
        normalize_encoders=Default,
        label=Default,
        seed=Default,
    ):
        super().__init__(label=label, seed=seed)
        self.n_neurons = n_neurons
        self.dimensions = dimensions
        self.radius = radius
        self.encoders = encoders
        self.intercepts = intercepts
        self.max_rates = max_rates
        self.n_eval_points = n_eval_points
        self.eval_points = eval_points
        self.bias = bias
        self.gain = gain
        self.neuron_type = neuron_type
        self.noise = noise
        self.normalize_encoders = normalize_encoders

    def __getitem__(self, key):
        return ObjView(self, key)

    def __len__(self):
        return self.dimensions

    @property
    def neurons(self):
        """A direct interface to the neurons in the ensemble."""
        return Neurons(self)

    @neurons.setter
    def neurons(self, dummy):
        raise ReadonlyError(attr="neurons", obj=self)

    @property
    def size_in(self):
        """The dimensionality of the ensemble."""
        return self.dimensions

    @property
    def size_out(self):
        """The dimensionality of the ensemble."""
        return self.dimensions
コード例 #2
0
def test_scattered_hypersphere(dims, surface, seed, plt):
    scipy_special = pytest.importorskip("scipy.special")

    n = 3000
    dists = [
        UniformHypersphere(surface=surface),
        ScatteredHypersphere(surface=surface, method="sct"),
        ScatteredHypersphere(surface=surface, method="sct-approx"),
        ScatteredHypersphere(surface=surface, method="tfww"),
    ]
    assert isinstance(dists[0], UniformHypersphere)

    xx = []  # generated points, for each dist
    times = []  # time taken to generate the points, for each dist
    for dist in dists:
        rng = np.random.RandomState(seed)
        timer = time.time()
        x = dist.sample(n, d=dims, rng=rng)
        timer = time.time() - timer
        rng.shuffle(x)  # shuffle so we can compute distances in blocks without bias
        xx.append(x)
        times.append(timer)

    dd = []  # distance to the nearest point for each point, for each dist
    rr = []  # radii (norms) of all the generated points, for each dist
    for x in xx:
        # compute distances in blocks for efficiency (this means we're not actually
        # getting the minimum distance, just a proxy)
        n_split = 1000
        d_min = []
        for i in range(0, n, n_split):
            xi = x[i : i + n_split]
            d2 = ((xi[:, :, None] - xi.T[None, :, :]) ** 2).sum(axis=1)
            np.fill_diagonal(d2, np.inf)
            d_min.append(np.sqrt(d2.min(axis=1)))
        d_min = np.concatenate(d_min)
        dd.append(d_min)
        rr.append(np.sqrt((x ** 2).sum(axis=1)))

    # compute the approximate distance between points if they were evenly spread
    volume = np.pi ** (0.5 * dims) / scipy_special.gamma(0.5 * dims + 1)
    if surface:
        volume *= dims
    even_distance = (volume / n) ** (1 / (dims - 1 if surface else dims))

    # --- plots
    colors = ["b", "g", "r", "m", "c"]

    plt.subplot(211)
    bins = np.linspace(np.min(dd), np.max(dd), 31)
    for i, d in enumerate(dd):
        histogram, _ = np.histogram(d, bins=bins)
        plt.plot(
            0.5 * (bins[:-1] + bins[1:]),
            histogram,
            colors[i],
        )
        plt.plot([d.min()], [0], colors[i] + "x")
    plt.plot([even_distance], [0], "kx")
    plt.title("surface=%s, dims=%d, n=%d" % (surface, dims, n))

    plt.subplot(212)
    bins = np.linspace(0, 1.1, 31)
    for i, r in enumerate(rr):
        histogram, _ = np.histogram(r, bins=bins)
        plt.plot(
            0.5 * (bins[:-1] + bins[1:]),
            histogram,
            colors[i],
            label=f"{dists[i]}: t={times[i]:0.2e}",
        )
    plt.legend()

    # --- checks
    uniform_min = dd[0].min()
    for i, dist in enumerate(dists):
        if i == 0:
            continue

        # check that we're significantly better than UniformHypersphere
        d_min = dd[i].min()
        assert d_min > 1.2 * uniform_min, str(dist)

        # check that all surface points are on the surface
        if surface:
            assert np.allclose(rr[i], 1.0, atol=1e-5), str(dist)
コード例 #3
0
def test_distributions():
    check_init_args(PDF, ["x", "p"])
    check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1]))
    assert (repr(PDF(
        [1, 2], [0.4, 0.6])) == "PDF(x=array([1., 2.]), p=array([0.4, 0.6]))")

    check_init_args(Uniform, ["low", "high", "integer"])
    check_repr(Uniform(1, 3))
    check_repr(Uniform(1, 4, integer=True))
    assert repr(Uniform(0, 1)) == "Uniform(low=0, high=1)"
    assert repr(Uniform(
        0, 5, integer=True)) == "Uniform(low=0, high=5, integer=True)"

    check_init_args(Gaussian, ["mean", "std"])
    check_repr(Gaussian(0, 2))
    assert repr(Gaussian(1, 0.1)) == "Gaussian(mean=1, std=0.1)"

    check_init_args(Exponential, ["scale", "shift", "high"])
    check_repr(Exponential(2.0))
    check_repr(Exponential(2.0, shift=0.1))
    check_repr(Exponential(2.0, shift=0.1, high=10.0))
    assert repr(Exponential(2.0)) == "Exponential(scale=2.0)"

    check_init_args(UniformHypersphere, ["surface", "min_magnitude"])
    check_repr(UniformHypersphere())
    check_repr(UniformHypersphere(surface=True))
    check_repr(UniformHypersphere(min_magnitude=0.3))
    assert repr(UniformHypersphere()) == "UniformHypersphere()"
    assert repr(
        UniformHypersphere(surface=True)) == "UniformHypersphere(surface=True)"

    check_init_args(ScatteredHypersphere,
                    ["surface", "min_magnitude", "base", "method"])
    check_repr(ScatteredHypersphere())
    check_repr(ScatteredHypersphere(surface=True))
    check_repr(ScatteredHypersphere(min_magnitude=0.3))
    check_repr(ScatteredHypersphere(base=Uniform(0, 1)))
    check_repr(ScatteredHypersphere(method="tfww"))
    assert repr(ScatteredHypersphere()) == "ScatteredHypersphere()"
    assert (repr(ScatteredHypersphere(
        surface=True)) == "ScatteredHypersphere(surface=True)")
    assert (repr(ScatteredHypersphere(base=Uniform(0, 1), method="tfww")) ==
            "ScatteredHypersphere(base=Uniform(low=0, high=1), method='tfww')")

    check_init_args(Choice, ["options", "weights"])
    check_repr(Choice([3, 2, 1]))
    check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7]))
    assert repr(Choice([1, 2, 3])) == "Choice(options=array([1., 2., 3.]))"
    assert (repr(
        Choice([1, 2, 3], weights=[0.1, 0.5, 0.4])
    ) == "Choice(options=array([1., 2., 3.]), weights=array([0.1, 0.5, 0.4]))")

    check_init_args(Samples, ["samples"])
    check_repr(Samples([3, 2, 1]))
    assert repr(Samples([3, 2, 1])) == "Samples(samples=array([3., 2., 1.]))"

    check_init_args(SqrtBeta, ["n", "m"])
    check_repr(SqrtBeta(3))
    check_repr(SqrtBeta(3, m=2))
    assert repr(SqrtBeta(3)) == "SqrtBeta(n=3)"
    assert repr(SqrtBeta(3, 2)) == "SqrtBeta(n=3, m=2)"

    check_init_args(SubvectorLength, ["dimensions", "subdimensions"])
    check_repr(SubvectorLength(6))
    check_repr(SubvectorLength(6, 2))
    assert repr(SubvectorLength(3)) == "SubvectorLength(dimensions=3)"

    check_init_args(CosineSimilarity, ["dimensions"])
    check_repr(CosineSimilarity(6))
    assert repr(CosineSimilarity(6)) == "CosineSimilarity(dimensions=6)"