コード例 #1
0
def test_random_network(
    dimensions, neurons_per_d, neuron_type, n_ensembles, n_connections
):
    net = benchmarks.random_network(
        dimensions, neurons_per_d, neuron_type, n_ensembles, n_connections
    )
    _test_random(
        net, dimensions, neurons_per_d, neuron_type, n_ensembles, n_connections
    )
コード例 #2
0
        ),
        (benchmarks.cconv(128, 64, nengo.LIF()), False, 64, True, 2.3, 2.6),
        (
            benchmarks.integrator(128, 32, nengo.RectifiedLinear()),
            True,
            64,
            True,
            0.6,
            0.9,
        ),
        (benchmarks.integrator(128, 32, nengo.LIF()), True, 64, True, 0.95, 1.15),
        (
            benchmarks.random_network(
                64,
                32,
                nengo.RectifiedLinear(),
                n_ensembles=20,
                connections_per_ensemble=5,
                seed=0,
            ),
            False,
            None,
            True,
            0.5,
            0.7,
        ),
        (benchmarks.lmu(1000, 1, native_nengo=True), True, 100, True, 1.3, 1.5),
        (benchmarks.lmu(1000, 1, native_nengo=True), True, 100, False, 1.05, 1.25),
    ],
)
def test_performance(net, train, minibatch_size, eager, min, max):
    # performance is based on Azure NC6 VM
コード例 #3
0
def compare_simplifications(ctx, dimensions):
    load = ctx.obj["load"]
    reps = ctx.obj["reps"]
    device = ctx.obj["device"]

    simplifications = [
        graph_optimizer.remove_constant_copies,
        graph_optimizer.remove_unmodified_resets,
        graph_optimizer.remove_zero_incs, graph_optimizer.remove_identity_muls
    ]

    params = list(itertools.product((False, True),
                                    repeat=len(simplifications)))

    if load:
        with open("compare_simplifications_data.pkl", "rb") as f:
            results = pickle.load(f)
    else:
        results = [
            dict([("times", [])] + [(s.__name__, p[i])
                                    for i, s in enumerate(simplifications)])
            for j, p in enumerate(params)
        ]

    # net = build_spaun(dimensions)
    net = benchmarks.random_network(dimensions, 32, nengo.RectifiedLinear(),
                                    1000, 100)
    with net:
        nengo_dl.configure_settings(inference_only=True)
    model = nengo.builder.Model(dt=0.001,
                                builder=nengo_dl.builder.NengoBuilder())
    model.build(net)

    if reps > 0:
        # pre-heat
        with nengo_dl.Simulator(None,
                                model=model,
                                device=device,
                                progress_bar=False) as sim:
            sim.run(reps, progress_bar=False)

        for j, p in enumerate(params):
            simps = []
            for i, s in enumerate(p):
                if s:
                    simps.append(simplifications[i])

            with net:
                nengo_dl.configure_settings(simplifications=simps)

            print("%d/%d" % (j + 1, len(params)), [x.__name__ for x in simps])

            with nengo_dl.Simulator(None,
                                    model=model,
                                    unroll_simulation=10,
                                    device=device,
                                    progress_bar=False) as sim:
                sim.run(0.1, progress_bar=False)

                sim_time = 1.0
                for _ in range(reps):
                    start = time.time()
                    sim.run(sim_time, progress_bar=False)
                    results[j]["times"].append(
                        (time.time() - start) / sim_time)

            print("   ", min(results[j]["times"]), max(results[j]["times"]),
                  np.mean(results[j]["times"]))

        with open("compare_simplifications_data.pkl", "wb") as f:
            pickle.dump(results, f)