コード例 #1
0
def test_identity_array(n_ensembles, ens_dimensions):
    with nengo.Network() as model:
        a = nengo.networks.EnsembleArray(10, n_ensembles, ens_dimensions)
        b = nengo.networks.EnsembleArray(10, n_ensembles, ens_dimensions)
        nengo.Connection(a.output, b.input)

    nengo_loihi.add_params(model)
    networks = splitter.split(model,
                              precompute=False,
                              remove_passthrough=True,
                              max_rate=1000,
                              inter_tau=0.005)

    # ignore the a.input -> a.ensemble connections
    connections = [
        c for c in networks.chip.connections
        if not (isinstance(c.pre_obj, splitter.ChipReceiveNode)
                and c.post_obj in a.ensembles)
    ]

    assert len(connections) == n_ensembles
    pre = set()
    post = set()
    for c in connections:
        assert c.pre in a.all_ensembles or c.pre_obj is a.input
        assert c.post in b.all_ensembles
        assert np.allclose(c.transform, np.eye(ens_dimensions))
        pre.add(c.pre)
        post.add(c.post)
    assert len(pre) == n_ensembles
    assert len(post) == n_ensembles
コード例 #2
0
def test_probedict_fallbacks(precompute, Simulator):
    with nengo.Network() as net:
        nengo_loihi.add_params(net)
        node_a = nengo.Node(0)
        with nengo.Network():
            ens_b = nengo.Ensemble(10, 1)
            conn_ab = nengo.Connection(node_a, ens_b)
        ens_c = nengo.Ensemble(5, 1)
        net.config[ens_c].on_chip = False
        conn_bc = nengo.Connection(ens_b, ens_c)
        probe_a = nengo.Probe(node_a)
        probe_c = nengo.Probe(ens_c)

    with Simulator(net, precompute=precompute) as sim:
        sim.run(0.002)

    assert node_a in sim.data
    assert ens_b in sim.data
    assert ens_c in sim.data
    assert probe_a in sim.data
    assert probe_c in sim.data

    # TODO: connections are currently not probeable as they are
    #       replaced in the splitting process
    assert conn_ab  # in sim.data
    assert conn_bc  # in sim.data
コード例 #3
0
def test_full_array(n_ensembles, ens_dimensions):
    with nengo.Network() as model:
        a = nengo.networks.EnsembleArray(10, n_ensembles, ens_dimensions)
        b = nengo.networks.EnsembleArray(10, n_ensembles, ens_dimensions)
        D = n_ensembles * ens_dimensions
        nengo.Connection(a.output, b.input, transform=np.ones((D, D)))

    nengo_loihi.add_params(model)
    networks = splitter.split(model,
                              precompute=False,
                              remove_passthrough=True,
                              max_rate=1000,
                              inter_tau=0.005)

    # ignore the a.input -> a.ensemble connections
    connections = [
        c for c in networks.chip.connections
        if not (isinstance(c.pre_obj, splitter.ChipReceiveNode)
                and c.post_obj in a.ensembles)
    ]

    assert len(connections) == n_ensembles**2
    pairs = set()
    for c in connections:
        assert c.pre in a.all_ensembles
        assert c.post in b.all_ensembles
        assert np.allclose(c.transform,
                           np.ones((ens_dimensions, ens_dimensions)))
        pairs.add((c.pre, c.post))
    assert len(pairs) == n_ensembles**2
コード例 #4
0
def test_sliced_probe(allclose, probe_slice, Simulator):
    n_neurons = 16
    # The bias should be the same for each block, but different within the block
    # to see some variety. This gives bias 0, 1, 2, 3 to the four neurons in the
    # 2 by 2 block.
    bias = np.tile(np.arange(4).reshape((2, 2)), (2, 2)).flatten()

    with nengo.Network() as net:
        e = nengo.Ensemble(n_neurons, 1, gain=np.zeros(n_neurons), bias=bias)
        p = nengo.Probe(e.neurons[probe_slice], "voltage", synapse=0.002)

    with Simulator(net) as ref_sim:
        ref_sim.run(0.01)

    ref_voltages = ref_sim.data[p]

    with net:
        nengo_loihi.add_params(net)
        net.config[e].block_shape = nengo_loihi.BlockShape((2, 2), (n_neurons // 4, 4))

    with Simulator(net) as split_sim:
        split_sim.run(ref_sim.time)

    split_voltages = split_sim.data[p]

    assert np.all(ref_sim.data[e].gain == split_sim.data[e].gain)
    assert np.all(ref_sim.data[e].bias == split_sim.data[e].bias)

    assert allclose(split_voltages, ref_voltages)
コード例 #5
0
def test_ens_decoded_on_host(precompute, allclose, Simulator, seed, plt):
    out_synapse = nengo.synapses.Alpha(0.03)
    simtime = 0.6

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        stim = nengo.Node(lambda t: [np.sin(t * 2 * np.pi / simtime)])

        a = nengo.Ensemble(100, 1)
        model.config[a].on_chip = False

        b = nengo.Ensemble(100, 1)

        nengo.Connection(stim, a)

        nengo.Connection(a, b, function=lambda x: -x)

        p_stim = nengo.Probe(stim, synapse=out_synapse)
        p_a = nengo.Probe(a, synapse=out_synapse)
        p_b = nengo.Probe(b, synapse=out_synapse)

    with Simulator(model, precompute=precompute) as sim:
        sim.run(simtime)

    plt.plot(sim.trange(), sim.data[p_stim])
    plt.plot(sim.trange(), sim.data[p_a])
    plt.plot(sim.trange(), sim.data[p_b])

    assert allclose(sim.data[p_a], sim.data[p_stim], atol=0.05, rtol=0.01)
    assert allclose(sim.data[p_b], -sim.data[p_a], atol=0.15, rtol=0.1)
コード例 #6
0
def test_probe_split_blocks(Simulator, seed, plt):
    n_neurons = 80
    gain = np.ones(n_neurons)
    bias = np.linspace(0, 20, n_neurons)
    simtime = 0.2

    with nengo.Network(seed=seed) as net:
        ens = nengo.Ensemble(n_neurons, 1, gain=gain, bias=bias)

        probe = nengo.Probe(ens.neurons)

        probe1_slice = slice(3, 33)
        probe1 = nengo.Probe(ens.neurons[probe1_slice])

        probe2_slice = slice(7, 52, 3)
        probe2 = nengo.Probe(ens.neurons[probe2_slice])

        probe3_slice = [2, 5, 17, 21, 36, 49, 52, 69,
                        73]  # randomly chosen inds
        probe3 = nengo.Probe(ens.neurons[probe3_slice])

    # run without splitting ensemble
    with Simulator(net) as sim1:
        assert len(sim1.model.blocks) == 1
        sim1.run(simtime)

    # run with splitting ensemble
    with net:
        add_params(net)
        net.config[ens].block_shape = BlockShape((5, 4), (10, 8))

    with Simulator(net) as sim2:
        assert len(sim2.model.blocks) == 4
        sim2.run(simtime)

    for k, sim in enumerate((sim1, sim2)):
        plt.subplot(2, 1, k + 1)
        plt.plot(bias, sim.data[probe].mean(axis=0))
        plt.plot(bias[probe1_slice], sim.data[probe1].mean(axis=0))
        plt.plot(bias[probe2_slice], sim.data[probe2].mean(axis=0), ".")
        plt.plot(bias[probe3_slice], sim.data[probe3].mean(axis=0), "x")

    # ensure rates increase and not everything is zero
    for sim in (sim1, sim2):
        diffs = np.diff(sim.data[probe].mean(axis=0))
        assert (diffs >= 0).all() and (diffs > 1).sum() > 10

    # ensure slices match unsliced probe
    for sim in (sim1, sim2):
        assert np.array_equal(sim.data[probe1], sim.data[probe][:,
                                                                probe1_slice])
        assert np.array_equal(sim.data[probe2], sim.data[probe][:,
                                                                probe2_slice])
        assert np.array_equal(sim.data[probe3], sim.data[probe][:,
                                                                probe3_slice])

    # ensure split and unsplit simulators match
    for p in (probe, probe1, probe2, probe3):
        assert np.array_equal(sim1.data[p], sim2.data[p])
コード例 #7
0
def test_model_validate_notempty(Simulator):
    with nengo.Network() as model:
        nengo_loihi.add_params(model)

        a = nengo.Ensemble(10, 1)
        model.config[a].on_chip = False

    with pytest.raises(nengo.exceptions.BuildError):
        with Simulator(model):
            pass
コード例 #8
0
def test_dt(dt, pre_on_chip, Simulator, seed, plt, allclose):
    function = lambda x: -x
    simtime = 0.2

    probe_synapse = nengo.Alpha(0.01)
    conn_synapse = nengo.Lowpass(0.005)
    stim_synapse = probe_synapse
    # stim synapse accounts for delays in connections/probes, so we can compare
    if pre_on_chip:
        stim_synapse = stim_synapse.combine(conn_synapse)

    ens_params = dict(
        intercepts=nengo.dists.Uniform(-0.9, 0.9),
        max_rates=nengo.dists.Uniform(100, 120),
    )

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        stim = nengo.Node(lambda t: -(np.sin(2 * np.pi * t / simtime)))
        stim_p = nengo.Probe(stim, synapse=stim_synapse)

        pre = nengo.Ensemble(100, 1, **ens_params)
        model.config[pre].on_chip = pre_on_chip
        pre_p = nengo.Probe(pre, synapse=probe_synapse)

        post = nengo.Ensemble(101, 1, **ens_params)
        post_p = nengo.Probe(post, synapse=probe_synapse)

        nengo.Connection(stim, pre, synapse=None)
        nengo.Connection(
            pre,
            post,
            function=function,
            synapse=conn_synapse,
            solver=nengo.solvers.LstsqL2(weights=True),
        )

    with Simulator(model, dt=dt) as sim:
        assert sim.model.decode_tau == conn_synapse.tau
        sim.run(simtime)

    x = sim.data[stim_p]
    y = function(x)
    if pre_on_chip:
        y = conn_synapse.filt(y, dt=dt)
    else:
        y = conn_synapse.combine(conn_synapse).filt(y, dt=dt)
    plt.plot(sim.trange(), x, "k--")
    plt.plot(sim.trange(), y, "k--")
    plt.plot(sim.trange(), sim.data[pre_p])
    plt.plot(sim.trange(), sim.data[post_p])

    assert allclose(sim.data[pre_p], x, rtol=0.1, atol=0.1)
    assert allclose(sim.data[post_p], y, rtol=0.1, atol=0.1)
コード例 #9
0
def test_n2n_on_host(precompute, allclose, Simulator, seed_ens, seed, plt):
    """Ensure that neuron to neuron connections work on and off chip."""

    n_neurons = 50
    # When the ensemble is seeded, the output plots will make more sense,
    # but the test should work whether they're seeded or not.
    ens_seed = (seed + 1) if seed_ens else None
    if not seed_ens:
        pytest.xfail("Seeds change when moving ensembles off/on chip")
    simtime = 1.0

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        stim = nengo.Node(lambda t: [np.sin(t * 2 * np.pi / simtime)])

        # pre receives stimulation and represents the sine wave
        pre = nengo.Ensemble(n_neurons, dimensions=1, seed=ens_seed)
        model.config[pre].on_chip = False
        nengo.Connection(stim, pre)

        # post has pre's neural activity forwarded to it.
        # Since the neuron parameters are the same, it should also represent
        # the same sine wave.
        # The 0.015 scaling is chosen so the values match visually,
        # though a more principled reason would be better.
        post = nengo.Ensemble(n_neurons, dimensions=1, seed=ens_seed)
        nengo.Connection(pre.neurons,
                         post.neurons,
                         transform=np.eye(n_neurons) * 0.015)

        p_synapse = nengo.synapses.Alpha(0.03)
        p_stim = nengo.Probe(stim, synapse=p_synapse)
        p_pre = nengo.Probe(pre, synapse=p_synapse)
        p_post = nengo.Probe(post, synapse=p_synapse)

    with Simulator(model, precompute=precompute) as sim:
        sim.run(simtime)
    t = sim.trange()

    model.config[pre].on_chip = True

    with Simulator(model, precompute=precompute) as sim2:
        sim2.run(simtime)
    t2 = sim2.trange()

    plt.plot(t, sim.data[p_stim], c="k", label="input")
    plt.plot(t, sim.data[p_pre], label="pre off-chip")
    plt.plot(t, sim.data[p_post], label="post (pre off-chip)")
    plt.plot(t2, sim2.data[p_pre], label="pre on-chip")
    plt.plot(t2, sim2.data[p_post], label="post (pre on-chip)")
    plt.legend()

    assert allclose(sim.data[p_pre], sim2.data[p_pre], atol=0.1)
    assert allclose(sim.data[p_post], sim2.data[p_post], atol=0.1)
コード例 #10
0
ファイル: test_conv.py プロジェクト: rachmadvwp/nengo-loihi
def test_conv_input(channels_last, Simulator, plt, allclose):
    input_shape = ImageShape(4, 4, 1, channels_last=channels_last)
    seed = 3  # fix seed to do the same computation for both channel positions
    rng = np.random.RandomState(seed + 1)

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        a = nengo.Node(rng.uniform(0, 1, size=input_shape.size))

        nc = 2
        kernel = np.array([1., -1.]).reshape((1, 1, 1, nc))
        transform = nengo_loihi.Conv2D.from_kernel(kernel, input_shape)
        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=nengo.SpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([50]),
                           intercepts=nengo.dists.Choice([0]))
        net.config[b].on_chip = False
        nengo.Connection(a, b.neurons, transform=transform)
        output_shape = transform.output_shape

        nf = 4
        kernel = rng.uniform(-0.005, 0.005, size=(nc, 3, 3, nf))
        transform = nengo_loihi.Conv2D.from_kernel(kernel, output_shape)
        c = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=nengo.LIF(),
                           max_rates=nengo.dists.Choice([100]),
                           intercepts=nengo.dists.Choice([0]))
        nengo.Connection(b.neurons, c.neurons, transform=transform)
        output_shape = transform.output_shape

        p = nengo.Probe(c.neurons)

    with nengo.Simulator(net, optimize=False) as sim:
        sim.run(1.0)

    with Simulator(net, seed=seed) as sim_loihi:
        sim_loihi.run(1.0)

    p0 = np.sum(sim.data[p] > 0, axis=0).reshape(output_shape.shape())
    p1 = np.sum(sim_loihi.data[p] > 0, axis=0).reshape(output_shape.shape())
    if not output_shape.channels_last:
        p0 = np.transpose(p0, (1, 2, 0))
        p1 = np.transpose(p1, (1, 2, 0))

    plt.plot(p0.ravel(), 'k')
    plt.plot(p1.ravel(), 'b--')

    # loihi spikes are not exactly the same, but should be close-ish
    assert allclose(p0, p1, rtol=0.15, atol=1)
コード例 #11
0
def test_model_validate_notempty(Simulator):
    with nengo.Network() as model:
        nengo_loihi.add_params(model)

        a = nengo.Ensemble(10, 1)
        model.config[a].on_chip = False

    assert nengo.rc.get("decoder_cache", "enabled")

    with pytest.raises(BuildError, match="No neurons marked"):
        with Simulator(model):
            pass

    # Ensure cache config not changed
    assert nengo.rc.get("decoder_cache", "enabled")
コード例 #12
0
def piecewise_net(n_pres, pres_time, seed):
    values = np.linspace(-1, 1, n_pres)
    with nengo.Network(seed=seed) as net:
        add_params(net)
        inp = nengo.Node(nengo.processes.PresentInput(values, pres_time),
                         size_out=1)
        ens = nengo.Ensemble(100, 1)
        nengo.Connection(inp, ens)

        net.probe = nengo.Probe(ens, synapse=nengo.Alpha(0.01))
        node = nengo.Node(size_in=1)
        nengo.Connection(ens, node, synapse=nengo.Alpha(0.01))
        net.node_probe = nengo.Probe(node)

    return net, values
コード例 #13
0
def test_interchip_helpers(Simulator, rng):
    """Test other cases for helper functions used by Interchip allocators."""

    with nengo.Network() as net:
        nengo_loihi.add_params(net)
        a = nengo.Ensemble(2000, 1)  # this ensemble will be split (2 blocks)
        b = nengo.Ensemble(1000, 1)  # this ensemble will be one block
        c = nengo.Ensemble(1000, 1)  # this ensemble will be off-chip
        net.config[c].on_chip = False
        nengo.Connection(a, b)

    with nengo.Network():
        d = nengo.Ensemble(10, 1)  # this ensemble is in a different network (errors)

    ens_rates = {
        a: rng.uniform(size=a.n_neurons),
        b: rng.uniform(size=b.n_neurons),
        c: rng.uniform(size=c.n_neurons),
    }

    with Simulator(net) as sim:
        # --- test ensemble_to_block_rates
        block_rates = ensemble_to_block_rates(sim.model, ens_rates)

        a_blocks = sim.model.objs[a]["out"]
        b_blocks = sim.model.objs[b]["out"]
        assert set(block_rates) == (set(a_blocks) | set(b_blocks))

        i = 0
        for block in a_blocks:
            assert np.array_equal(
                ens_rates[a][i : i + block.n_neurons], block_rates[block]
            )
            i += block.n_neurons

        assert len(b_blocks) == 1 and np.array_equal(
            ens_rates[b], block_rates[b_blocks[0]]
        )

        # test ValueError if ensemble not in model
        ens_rates[d] = rng.uniform(size=d.n_neurons)
        with pytest.raises(ValueError, match="Ensemble.*does not appear in the model"):
            ensemble_to_block_rates(sim.model, ens_rates)

        # --- test estimate_interblock_activity error
        partial_ens_rates = {a: ens_rates[a]}
        with pytest.raises(KeyError, match="block.*not in block_rates"):
            GreedyInterchip(ensemble_rates=partial_ens_rates)(sim.model, n_chips=2)
コード例 #14
0
def test_synapse_merging(Simulator, seed):
    with nengo.Network(seed=seed) as model:
        a = nengo.networks.EnsembleArray(10, n_ensembles=2)
        b = nengo.Node(None, size_in=2)
        c = nengo.networks.EnsembleArray(10, n_ensembles=2)
        nengo.Connection(a.output[0], b[0], synapse=None)
        nengo.Connection(a.output[1], b[1], synapse=0.1)
        nengo.Connection(b[0], c.input[0], synapse=None)
        nengo.Connection(b[0], c.input[1], synapse=0.2)
        nengo.Connection(b[1], c.input[0], synapse=None)
        nengo.Connection(b[1], c.input[1], synapse=0.2)

    nengo_loihi.add_params(model)
    networks = splitter.split(model,
                              precompute=False,
                              remove_passthrough=True,
                              max_rate=1000,
                              inter_tau=0.005)

    # ignore the a.input -> a.ensemble connections
    connections = [
        c for c in networks.chip.connections
        if not (isinstance(c.pre_obj, splitter.ChipReceiveNode)
                and c.post_obj in a.ensembles)
    ]

    assert len(connections) == 4
    desired_filters = {
        ('0', '0'): None,
        ('0', '1'): 0.2,
        ('1', '0'): 0.1,
        ('1', '1'): 0.3,
    }
    for c in connections:
        if desired_filters[(c.pre.label, c.post.label)] is None:
            assert c.synapse is None
        else:
            assert isinstance(c.synapse, nengo.Lowpass)
            assert np.allclose(c.synapse.tau,
                               desired_filters[(c.pre.label, c.post.label)])

    # check that model builds/runs correctly
    with Simulator(model, remove_passthrough=True) as sim:
        sim.step()
コード例 #15
0
def test_seeds(precompute, Simulator, seed):
    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        e0 = nengo.Ensemble(1, 1, label="e0")
        e1 = nengo.Ensemble(1, 1, seed=2, label="e1")
        e2 = nengo.Ensemble(1, 1, label="e2")
        net.config[e2].on_chip = False
        nengo.Connection(e0, e1)
        nengo.Connection(e0, e2)

        with nengo.Network():
            n = nengo.Node(0)
            e = nengo.Ensemble(1, 1, label="e")
            nengo.Node(1)
            nengo.Connection(n, e)
            nengo.Probe(e)

        with nengo.Network(seed=8):
            nengo.Ensemble(8, 1, seed=3, label="unnamed")
            nengo.Node(1)

    def get_seed(sim, obj):
        return sim.model.seeds.get(
            obj,
            sim.model.host.seeds.get(obj,
                                     sim.model.host_pre.seeds.get(obj, None)))

    # --- test that seeds are the same as nengo ref simulator
    ref = nengo.Simulator(net)

    with Simulator(net, precompute=precompute) as sim:
        for obj in net.all_objects:
            assert get_seed(sim, obj) == ref.model.seeds.get(obj, None)

    # --- test that seeds that we set are preserved after splitting
    model = nengo_loihi.builder.Model()
    for i, obj in enumerate(net.all_objects):
        model.seeds[obj] = i

    with Simulator(net, model=model, precompute=precompute) as sim:
        for i, obj in enumerate(net.all_objects):
            assert get_seed(sim, obj) == i
コード例 #16
0
def test_dt(dt, pre_on_chip, Simulator, seed, plt, allclose):
    function = lambda x: x**2
    probe_synapse = nengo.Alpha(0.01)
    simtime = 0.2

    ens_params = dict(
        intercepts=nengo.dists.Uniform(-0.9, 0.9),
        max_rates=nengo.dists.Uniform(100, 120),
    )

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        stim = nengo.Node(lambda t: -(np.sin(2 * np.pi * t / simtime)))
        stim_p = nengo.Probe(stim, synapse=probe_synapse)

        pre = nengo.Ensemble(100, 1, **ens_params)
        model.config[pre].on_chip = pre_on_chip
        pre_p = nengo.Probe(pre, synapse=probe_synapse)

        post = nengo.Ensemble(101, 1, **ens_params)
        post_p = nengo.Probe(post, synapse=probe_synapse)

        nengo.Connection(stim, pre)
        nengo.Connection(pre,
                         post,
                         function=function,
                         solver=nengo.solvers.LstsqL2(weights=True))

    with Simulator(model, dt=dt) as sim:
        sim.run(simtime)

    x = sim.data[stim_p]
    y = function(x)
    plt.plot(sim.trange(), x, "k--")
    plt.plot(sim.trange(), y, "k--")
    plt.plot(sim.trange(), sim.data[pre_p])
    plt.plot(sim.trange(), sim.data[post_p])

    assert allclose(sim.data[pre_p], x, rtol=0.1, atol=0.1)
    assert allclose(sim.data[post_p], y, rtol=0.1, atol=0.1)
コード例 #17
0
ファイル: Networks.py プロジェクト: DanielAnthes/Loihi-RL
    def __init__(self, input_node, n_neuron_out, lr, onchip=True):
        '''
        initialize critic net as a nengo network object

        PARAMS:
            n_pc            -   number of place cells
            n_neuron_in     -   number of neurons in Ensemble encoding input
            n_neuron_out    -   number of neurons in Ensemble encoding output
        '''
        with nengo.Network() as net:
            nengo_loihi.add_params(net)
            net.output = nengo.Ensemble(n_neurons=n_neuron_out, dimensions=1)
            net.conn = nengo.Connection(input_node,
                                        net.output,
                                        function=lambda x: [0],
                                        synapse=0.01)
            # TODO: PES changes Decoders of incoming node
            # TODO: Does this interfer with other learning due to shared input?
            net.conn.learning_rule_type = nengo.PES(learning_rate=lr)
            net.config[net.output].on_chip = onchip
        self.net = net
コード例 #18
0
def test_slicing_bugs(Simulator, seed):

    n = 50
    with nengo.Network() as model:
        a = nengo.Ensemble(n, 1, label="a")
        p0 = nengo.Probe(a[0])
        p = nengo.Probe(a)

    with Simulator(model) as sim:
        sim.run(0.1)

    assert np.allclose(sim.data[p0], sim.data[p])
    assert a in sim.model.params
    assert a not in sim.model.host.params

    with nengo.Network() as model:
        nengo_loihi.add_params(model)

        a = nengo.Ensemble(n, 1, label="a")

        b0 = nengo.Ensemble(n, 1, label="b0", seed=seed)
        model.config[b0].on_chip = False
        nengo.Connection(a[0], b0)

        b = nengo.Ensemble(n, 1, label="b", seed=seed)
        model.config[b].on_chip = False
        nengo.Connection(a, b)

        p0 = nengo.Probe(b0)
        p = nengo.Probe(b)

    with Simulator(model) as sim:
        sim.run(0.1)

    assert np.allclose(sim.data[p0], sim.data[p])
    assert a in sim.model.params
    assert a not in sim.model.host.params
    assert b not in sim.model.params
    assert b in sim.model.host.params
コード例 #19
0
def test_passthrough_placement():
    with nengo.Network() as model:
        stim = nengo.Node(0)
        a = nengo.Node(None, size_in=1)  # should be off-chip
        b = nengo.Ensemble(10, 1)
        c = nengo.Node(None, size_in=1)  # should be removed
        d = nengo.Node(None, size_in=1)  # should be removed
        e = nengo.Node(None, size_in=1)  # should be removed
        f = nengo.Ensemble(10, 1)
        g = nengo.Node(None, size_in=1)  # should be off-chip
        nengo.Connection(stim, a)
        nengo.Connection(a, b)
        nengo.Connection(b, c)
        nengo.Connection(c, d)
        nengo.Connection(d, e)
        nengo.Connection(e, f)
        nengo.Connection(f, g)
        nengo.Probe(g)

    nengo_loihi.add_params(model)
    networks = splitter.split(model,
                              precompute=False,
                              remove_passthrough=True,
                              max_rate=1000,
                              inter_tau=0.005)
    chip = networks.chip
    host = networks.host

    assert a in host.nodes
    assert a not in chip.nodes
    assert c not in host.nodes
    assert c not in chip.nodes
    assert d not in host.nodes
    assert d not in chip.nodes
    assert e not in host.nodes
    assert e not in chip.nodes
    assert g in host.nodes
    assert g not in chip.nodes
コード例 #20
0
def test_transform_merging(d1, d2, d3):
    with nengo.Network() as model:
        a = nengo.Ensemble(10, d1)
        b = nengo.Node(None, size_in=d2)
        c = nengo.Ensemble(10, d3)

        t1 = np.random.uniform(-1, 1, (d2, d1))
        t2 = np.random.uniform(-1, 1, (d3, d2))

        nengo.Connection(a, b, transform=t1)
        nengo.Connection(b, c, transform=t2)

    nengo_loihi.add_params(model)
    networks = splitter.split(model,
                              precompute=False,
                              remove_passthrough=True,
                              max_rate=1000,
                              inter_tau=0.005)
    chip = networks.chip

    assert len(chip.connections) == 1
    conn = chip.connections[0]
    assert np.allclose(conn.transform, np.dot(t2, t1))
コード例 #21
0
def test_conv_deepnet(
    channels_last,
    pop_type,
    precompute,
    Simulator,
    request,
    rng,
    seed,
    plt,
    allclose,
):
    """Run a convolutional network with two layers on the chip.

    Checks that network with block splitting on the target matches one without
    on the emulator.
    """
    # TODO: This case fails in NxSDK 0.9.0 but will be fixed in the next version.
    # Remove this check once the next version is released.
    if pop_type == 32:
        pytest.skip("Pop32 multichip test requires latest NxSDK")

    def set_partition(partition):
        os.environ["PARTITION"] = partition

    request.addfinalizer(lambda: set_partition(""))
    # multichip pop_type = 16 works only on nahuku32 board currently
    if pop_type == 16:
        set_partition("nahuku32")

    def conv_layer(x,
                   input_shape,
                   array_init=None,
                   label=None,
                   conn_args=None,
                   **conv_args):
        conn_args = {} if conn_args is None else conn_args

        if array_init is not None:
            assert all(a not in conv_args
                       for a in ("init", "kernel_size", "n_filters"))
            assert array_init.ndim == 4
            conv_args["init"] = array_init
            conv_args["kernel_size"] = array_init.shape[:2]
            assert array_init.shape[2] == input_shape.n_channels
            conv_args["n_filters"] = array_init.shape[3]

        conv = nengo.Convolution(input_shape=input_shape, **conv_args)

        # add an ensemble to implement the activation function
        layer = nengo.Ensemble(conv.output_shape.size, 1, label=label)

        # connect up the input object to the new layer
        conn = nengo.Connection(x, layer.neurons, transform=conv)

        return layer, conv, conn

    channels = 1
    n_filters0 = 1
    n_filters1 = 4
    n_filters2 = 4

    # load data
    with open(os.path.join(test_dir, "mnist10.pkl"), "rb") as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)  # range (0, 1)
    input_shape = make_channel_shape(test_x.shape, channels, channels_last)

    filters0 = np.ones((1, 1, channels, n_filters0))

    # use Gabor filters for first layer
    filters1 = Gabor(freq=Uniform(0.5, 1),
                     sigma_x=Choice([0.9]),
                     sigma_y=Choice([0.9])).generate(n_filters1, (7, 7),
                                                     rng=rng)
    assert n_filters0 == 1
    filters1 = filters1[None, :, :, :]  # single channel
    filters1 = np.transpose(filters1,
                            (2, 3, 0, 1))  # rows, cols, in_chan, out_chan

    # use random combinations of first-layer channels in 1x1 convolution
    filters2 = rng.uniform(-0.2, 1,
                           size=(n_filters1, n_filters2)).clip(0, None)
    filters2 *= 2 / filters2.sum(axis=0,
                                 keepdims=True)  # each filter sums to 2
    filters2 = filters2[None, None, :, :]  # rows, cols, in_chan, out_chan

    tau_s = 0.001
    max_rate = 100
    amp = 1 / max_rate
    f_split = 2 if pop_type == 32 else 4

    # use Loihi neuron type so Nengo sim mimics Loihi neuron effects
    neuron_type = LoihiSpikingRectifiedLinear(amplitude=amp)

    pres_time = 0.2

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        net.config[nengo.Ensemble].neuron_type = neuron_type
        net.config[nengo.Ensemble].max_rates = Choice([max_rate])
        net.config[nengo.Ensemble].intercepts = Choice([0])
        net.config[nengo.Connection].synapse = tau_s

        u = nengo.Node(test_x.ravel(), label="u")

        layer0, conv0, conn0 = conv_layer(
            u,
            input_shape=input_shape,
            array_init=filters0,
            strides=(1, 1),
            channels_last=channels_last,
            label="layer0",
            conn_args=dict(synapse=None),
        )
        net.config[layer0].on_chip = False

        layer1, conv1, conn1 = conv_layer(
            layer0.neurons,
            input_shape=conv0.output_shape,
            array_init=filters1,
            strides=(2, 2),
            channels_last=channels_last,
            label="layer1",
        )
        net.config[layer1].block_shape = nengo_loihi.BlockShape(
            make_shape((4, 4), f_split, channels_last), conv1)
        net.config[conn1].pop_type = pop_type

        layer2, conv2, conn2 = conv_layer(
            layer1.neurons,
            input_shape=conv1.output_shape,
            array_init=filters2,
            strides=(1, 1),
            channels_last=channels_last,
            label="layer2",
        )
        net.config[layer2].block_shape = nengo_loihi.BlockShape(
            make_shape((4, 4), f_split, channels_last), conv2)
        net.config[conn2].pop_type = pop_type

        output_p = nengo.Probe(layer2.neurons)
        output_shape = conv2.output_shape

    with nengo.Simulator(net, optimize=False) as sim_nengo:
        sim_nengo.run(pres_time)
        ref_out = (sim_nengo.data[output_p] > 0).sum(axis=0).reshape(
            output_shape.shape)

    with Simulator(net, target="sim") as sim_emu:
        sim_emu.run(pres_time)
        emu_out = (sim_emu.data[output_p] > 0).sum(axis=0).reshape(
            output_shape.shape)

    # TODO: Remove the if condition when configurable timeout parameter
    # is available in nxsdk
    if (pop_type == 32 or
            os.popen("sinfo -h --partition=nahuku32").read().find("idle") > 0):
        with Simulator(
                net,
                precompute=precompute,
                hardware_options={
                    "allocator": RoundRobin(),
                    "snip_max_spikes_per_step": 800,
                },
        ) as sim_loihi:
            sim_loihi.run(pres_time)
            sim_out = ((sim_loihi.data[output_p] > 0).sum(axis=0).reshape(
                output_shape.shape))
    elif nengo_loihi.version.dev is None:
        pytest.fail(
            "Pop16 multichip test failed since Nahuku32 is unavailable")
    else:
        pytest.skip(
            "Pop16 multichip test skipped since Nahuku32 is unavailable")

    out_max = ref_out.max()
    ref_out = ref_out / out_max
    emu_out = emu_out / out_max
    sim_out = sim_out / out_max

    if channels_last:
        # channels first, to display channels in separate plots
        ref_out = np.transpose(ref_out, (2, 0, 1))
        emu_out = np.transpose(emu_out, (2, 0, 1))
        sim_out = np.transpose(sim_out, (2, 0, 1))

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters1, (2, 3, 0, 1))[0],
         rows=2,
         cols=2,
         grid=True,
         ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist((ref_out.ravel(), emu_out.ravel(), sim_out.ravel()), bins=21)

    ax = plt.subplot(rows, cols, 4)
    tile(ref_out, rows=2, cols=2, grid=True, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(emu_out, rows=2, cols=2, grid=True, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(sim_out, rows=2, cols=2, grid=True, ax=ax)

    assert allclose(sim_out, ref_out, atol=0.15, rtol=1e-3)
    assert allclose(sim_out, emu_out, atol=1e-3, rtol=1e-3)
コード例 #22
0
ファイル: test_conv.py プロジェクト: rachmadvwp/nengo-loihi
def test_conv_connection(channels, Simulator, seed, rng, plt, allclose):
    # channels_last = True
    channels_last = False
    if channels > 1:
        pytest.xfail("Cannot send population spikes to chip")

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)
    test_x = 1.999 * test_x - 0.999  # range (-1, 1)
    test_x = test_x[:, :, None]  # single channel
    input_shape = ImageShape(test_x.shape[0],
                             test_x.shape[1],
                             channels,
                             channels_last=channels_last)

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    filters = filters[None, :, :, :]  # single channel
    filters = np.transpose(filters, (0, 2, 3, 1))  # filters last
    strides = (2, 2)
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005
    dt = 0.001

    neuron_type = LoihiLIF(tau_rc=tau_rc, tau_ref=tau_ref)

    pres_time = 0.1

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        u = nengo.Node(nengo.processes.PresentInput([test_x.ravel()],
                                                    pres_time),
                       label='u')

        a = nengo.Ensemble(input_shape.size,
                           1,
                           neuron_type=LoihiSpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([40 / channels]),
                           intercepts=nengo.dists.Choice([0]),
                           label='a')
        model.config[a].on_chip = False

        if channels == 1:
            nengo.Connection(u, a.neurons, transform=1, synapse=None)
        elif channels == 2:
            # encode image into spikes using two channels (on/off)
            if input_shape.channels_last:
                nengo.Connection(u, a.neurons[0::2], transform=1, synapse=None)
                nengo.Connection(u,
                                 a.neurons[1::2],
                                 transform=-1,
                                 synapse=None)
            else:
                k = input_shape.rows * input_shape.cols
                nengo.Connection(u, a.neurons[:k], transform=1, synapse=None)
                nengo.Connection(u, a.neurons[k:], transform=-1, synapse=None)

            filters = np.vstack([filters, -filters])
        else:
            raise ValueError("Test not configured for more than two channels")

        conv2d_transform = Conv2D.from_kernel(filters,
                                              input_shape,
                                              strides=strides)
        output_shape = conv2d_transform.output_shape

        gain, bias = neuron_type.gain_bias(max_rates=100, intercepts=0)
        gain = gain * 0.01  # account for `a` max_rates
        b = nengo.Ensemble(output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([gain[0]]),
                           bias=nengo.dists.Choice([bias[0]]),
                           label='b')
        nengo.Connection(a.neurons,
                         b.neurons,
                         synapse=tau_s,
                         transform=conv2d_transform)

        bp = nengo.Probe(b.neurons)

    with nengo.Simulator(model, dt=dt, optimize=False) as sim:
        sim.run(pres_time)
    ref_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape())

    # Currently, default TensorFlow does not support channels first in conv
    use_nengo_dl = nengo_dl is not None and channels_last
    ndl_out = np.zeros_like(ref_out)
    if use_nengo_dl:
        with nengo_dl.Simulator(model, dt=dt) as sim:
            sim.run(pres_time)
        ndl_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape())

    with nengo_loihi.Simulator(model, dt=dt, target='simreal') as sim:
        sim.run(pres_time)
    real_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape())

    with Simulator(model, dt=dt) as sim:
        sim.run(pres_time)
    sim_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape())

    if not output_shape.channels_last:
        ref_out = np.transpose(ref_out, (1, 2, 0))
        ndl_out = np.transpose(ndl_out, (1, 2, 0))
        real_out = np.transpose(real_out, (1, 2, 0))
        sim_out = np.transpose(sim_out, (1, 2, 0))

    out_max = max(ref_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(np.transpose(ref_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(np.transpose(ndl_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(np.transpose(sim_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    if use_nengo_dl:
        assert allclose(ndl_out, ref_out, atol=1e-5, rtol=1e-5)
    assert allclose(real_out, ref_out, atol=1, rtol=1e-3)
    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)
コード例 #23
0
def test_chip_population_axons(on_chip, precompute, pop_type, channels_last,
                               Simulator, rng):
    """Check that all types of population axons work as inputs or between cores.

    Also, on the chip, dummy axons were still having an effect. Check this is fixed.
    """
    def conv_layer(input=None, label=None, **kwargs):
        conv = nengo.Convolution(**kwargs)
        layer = nengo.Ensemble(conv.output_shape.size, 1, label=label)
        conn = (nengo.Connection(input, layer.neurons, transform=conv)
                if input is not None else None)
        return layer, conv, conn

    if pop_type == 16 and not channels_last:
        pytest.skip(
            "pop16 axons not compatible with single-compartment shifts")

    max_rate = 100
    amp = 1 / max_rate

    n_filters0 = 4
    n_filters1 = 4
    # 6 x 6 input will have one unused pixel at edge with 3 x 3 kernel and stride 2
    input_shape = (6, 6, 1) if channels_last else (1, 6, 6)
    input_shape = nengo_transforms.ChannelShape(input_shape,
                                                channels_last=channels_last)
    X = rng.uniform(0.2, 1, size=input_shape.shape)
    kernel0 = rng.uniform(0.2, 1, size=(1, 1, 1, n_filters0))
    kernel1 = rng.uniform(0.1, 0.5, size=(3, 3, n_filters0, n_filters1))

    with nengo.Network(seed=0) as net:
        nengo_loihi.add_params(net)
        net.config[nengo.Ensemble].neuron_type = nengo.SpikingRectifiedLinear(
            amplitude=amp)
        net.config[nengo.Ensemble].max_rates = nengo.dists.Choice([max_rate])
        net.config[nengo.Ensemble].intercepts = nengo.dists.Choice([0])
        net.config[nengo.Connection].synapse = 0.005

        inp = nengo.Node(X.ravel()) if not on_chip else None

        # first layer is off-chip to translate the inputs into spikes
        layer0, conv0, _ = conv_layer(
            input=inp,
            n_filters=n_filters0,
            input_shape=input_shape,
            channels_last=channels_last,
            kernel_size=(1, 1),
            init=kernel0,
            label="layer0",
        )

        net.config[layer0].on_chip = on_chip
        if on_chip:
            assert kernel0.shape[:2] == (1, 1)
            w = kernel0[0, 0]
            Y = X.dot(w) if channels_last else np.tensordot(w.T, X, axes=1)
            layer0.gain = nengo.dists.Choice([0.0])
            layer0.bias = Y.ravel() * max_rate

        layer1, conv1, conn1 = conv_layer(
            input=layer0.neurons,
            n_filters=n_filters1,
            input_shape=conv0.output_shape,
            channels_last=channels_last,
            kernel_size=(3, 3),
            strides=(2, 2),
            init=kernel1,
            label="layer1",
        )
        net.config[conn1].pop_type = pop_type

        probe = nengo.Probe(layer1.neurons)

    sim_time = 0.1
    with Simulator(net, target="sim") as emulator:
        emulator.run(sim_time)

    with Simulator(net, target="loihi", precompute=precompute) as loihi:
        loihi.run(sim_time)

    assert np.all(emulator.data[probe].sum(axis=0) > 0)
    assert np.array_equal(loihi.data[probe], emulator.data[probe])
コード例 #24
0
train_data_out=train_out[:trainlen]
train_data_out_categorical=to_categorical(train_data_out)

dt = 0.001  # simulation timestep
presentation_time = 0.1  # input presentation time
max_rate = 100  # neuron firing rates
# neuron spike amplitude (scaled so that the overall output is ~1)
amp = 1 / max_rate
# input image shape
input_shape = (1, 7, 7)
n_parallel = 2  # number of parallel network repetitions
minibatch_size = 200

with nengo.Network(seed=0) as net:
    # set up the default parameters for ensembles/connections
    nengo_loihi.add_params(net)
    net.config[nengo.Ensemble].max_rates = nengo.dists.Choice([max_rate])
    net.config[nengo.Ensemble].intercepts = nengo.dists.Choice([0])
    net.config[nengo.Connection].synapse = None

    #neuron_type = nengo.SpikingRectifiedLinear(amplitude=amp)
    neuron_type = nengo.LIF(tau_rc=0.02, tau_ref=0.001, amplitude=amp)
    #neuron_type = nengo.AdaptiveLIF(amplitude=amp)
    #neuron_type = nengo.Izhikevich()
    # the input node that will be used to feed in input images
    inp = nengo.Node(
        nengo.processes.PresentInput(valid_data, presentation_time), size_out=nVariables
    )

    # the output node provides the 10-dimensional classification
    out = nengo.Node(size_in=nClass)
コード例 #25
0
def test_conv_connection(channels, channels_last, Simulator, seed, rng, plt,
                         allclose):
    # load data
    with open(os.path.join(test_dir, "mnist10.pkl"), "rb") as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape((28, 28))
    test_x = 1.999 * test_x - 0.999  # range (-1, 1)
    input_shape = make_channel_shape(test_x.shape, channels, channels_last)

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    filters = filters[None, :, :, :]  # single channel
    filters = np.transpose(filters, (2, 3, 0, 1))
    strides = (2, 2)
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005

    neuron_type = LoihiLIF(tau_rc=tau_rc, tau_ref=tau_ref)

    pres_time = 0.1

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        u = nengo.Node(test_x.ravel(), label="u")

        a = nengo.Ensemble(
            input_shape.size,
            1,
            neuron_type=LoihiSpikingRectifiedLinear(),
            max_rates=nengo.dists.Choice([40 / channels]),
            intercepts=nengo.dists.Choice([0]),
            label="a",
        )
        model.config[a].on_chip = False

        if channels == 1:
            nengo.Connection(u, a.neurons, transform=1, synapse=None)
        elif channels == 2:
            # encode image into spikes using two channels (on/off)
            if input_shape.channels_last:
                nengo.Connection(u, a.neurons[0::2], transform=1, synapse=None)
                nengo.Connection(u,
                                 a.neurons[1::2],
                                 transform=-1,
                                 synapse=None)
            else:
                k = input_shape.spatial_shape[0] * input_shape.spatial_shape[1]
                nengo.Connection(u, a.neurons[:k], transform=1, synapse=None)
                nengo.Connection(u, a.neurons[k:], transform=-1, synapse=None)

            filters = np.concatenate([filters, -filters], axis=2)
        else:
            raise ValueError("Test not configured for more than two channels")

        conv2d_transform = nengo_transforms.Convolution(
            8,
            input_shape,
            strides=strides,
            kernel_size=(7, 7),
            channels_last=channels_last,
            init=filters,
        )

        output_shape = conv2d_transform.output_shape

        gain, bias = neuron_type.gain_bias(max_rates=100, intercepts=0)
        gain = gain * 0.01  # account for `a` max_rates
        b = nengo.Ensemble(
            output_shape.size,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([gain[0]]),
            bias=nengo.dists.Choice([bias[0]]),
            label="b",
        )
        nengo.Connection(a.neurons,
                         b.neurons,
                         synapse=tau_s,
                         transform=conv2d_transform)

        bp = nengo.Probe(b.neurons)

    with nengo.Simulator(model, optimize=False) as sim_nengo:
        sim_nengo.run(pres_time)
    ref_out = sim_nengo.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, target="simreal") as sim_emu:
        sim_emu.run(pres_time)
    emu_out = sim_emu.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, hardware_options={"snip_max_spikes_per_step":
                                            800}) as sim_loihi:
        sim_loihi.run(pres_time)
    sim_out = sim_loihi.data[bp].mean(axis=0).reshape(output_shape.shape)

    if not output_shape.channels_last:
        ref_out = np.transpose(ref_out, (1, 2, 0))
        emu_out = np.transpose(emu_out, (1, 2, 0))
        sim_out = np.transpose(sim_out, (1, 2, 0))

    out_max = max(ref_out.max(), emu_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(np.transpose(ref_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(np.transpose(emu_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(np.transpose(sim_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    assert allclose(emu_out, ref_out, atol=10, rtol=1e-3)
    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)
コード例 #26
0
ファイル: test_conv.py プロジェクト: trigrass2/nengo-loihi
def test_conv_split(Simulator, rng, plt, allclose):
    channels_last = False

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    input_shape = nengo_transforms.ChannelShape((1, 28, 28),
                                                channels_last=channels_last)

    n_filters = 8
    kernel_size = (7, 7)
    kernel = Gabor(freq=Uniform(0.5, 1)).generate(n_filters,
                                                  kernel_size,
                                                  rng=rng)
    kernel = kernel[None, :, :, :]  # single channel
    kernel = np.transpose(kernel, (2, 3, 0, 1))
    strides = (2, 2)

    seed = 3  # fix seed to do the same computation for both channel positions

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        a = nengo.Node(test10[0][0].ravel())

        # --- make population to turn image into spikes
        nc = 1
        in_kernel = np.array([1.]).reshape((1, 1, 1, nc))
        transform = nengo_transforms.Convolution(1,
                                                 input_shape,
                                                 kernel_size=(1, 1),
                                                 init=in_kernel,
                                                 channels_last=channels_last)
        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=nengo.SpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([50]),
                           intercepts=nengo.dists.Choice([0]))
        net.config[b].on_chip = False
        nengo.Connection(a, b.neurons, transform=transform)
        in_shape = transform.output_shape

        transform = nengo_transforms.Convolution(n_filters,
                                                 in_shape,
                                                 kernel_size=kernel_size,
                                                 strides=strides,
                                                 init=kernel,
                                                 channels_last=channels_last)
        out_shape = transform.output_shape
        split_slices = conv.split_channels(out_shape,
                                           max_size=1024,
                                           max_channels=4)

        # --- make convolution population, split across ensembles
        cc = []
        cp = []
        out_shapes = []
        xslice = conv.ImageSlice(in_shape)
        for yslice in split_slices:
            transform_xy = conv.split_transform(transform, xslice, yslice)
            out_shapes.append(transform_xy.output_shape)
            c = nengo.Ensemble(transform_xy.output_shape.size,
                               1,
                               neuron_type=nengo.LIF(),
                               max_rates=nengo.dists.Choice([15]),
                               intercepts=nengo.dists.Choice([0]))
            nengo.Connection(b.neurons, c.neurons, transform=transform_xy)
            cc.append(c)
            cp.append(nengo.Probe(c.neurons))

    simtime = 0.3

    with nengo.Simulator(net, optimize=False) as sim_nengo:
        sim_nengo.run(simtime)

    hw_opts = dict(snip_max_spikes_per_step=100)
    with Simulator(net, seed=seed, hardware_options=hw_opts) as sim_loihi:
        sim_loihi.run(simtime)

    nengo_out = []
    loihi_out = []
    for p, out_shape_i in zip(cp, out_shapes):
        nengo_out.append(
            (sim_nengo.data[p] > 0).sum(axis=0).reshape(out_shape_i.shape))
        loihi_out.append(
            (sim_loihi.data[p] > 0).sum(axis=0).reshape(out_shape_i.shape))

    if channels_last:
        nengo_out = np.concatenate(nengo_out, axis=2)
        loihi_out = np.concatenate(loihi_out, axis=2)

        # put channels first to display them separately
        nengo_out = np.transpose(nengo_out, (2, 0, 1))
        loihi_out = np.transpose(loihi_out, (2, 0, 1))
    else:
        nengo_out = np.concatenate(nengo_out, axis=0)
        loihi_out = np.concatenate(loihi_out, axis=0)

    out_max = np.maximum(nengo_out.max(), loihi_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test10[0][0].reshape((28, 28)), vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(kernel[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(nengo_out.ravel(), bins=31)
    plt.hist(loihi_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(nengo_out, vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(loihi_out, vmin=0, vmax=out_max, cols=8, ax=ax)

    assert allclose(loihi_out, nengo_out, atol=0.05 * out_max, rtol=0.15)
コード例 #27
0
ファイル: test_conv.py プロジェクト: trigrass2/nengo-loihi
def test_conv_connection(channels, channels_last, Simulator, seed, rng, plt,
                         allclose):
    if channels_last:
        plt.saveas = None
        pytest.xfail("Blocked by CxBase cannot be > 256 bug")

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)
    test_x = 1.999 * test_x - 0.999  # range (-1, 1)
    input_shape = nengo_transforms.ChannelShape(
        (test_x.shape + (channels, )) if channels_last else
        ((channels, ) + test_x.shape),
        channels_last=channels_last)

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    filters = filters[None, :, :, :]  # single channel
    filters = np.transpose(filters, (2, 3, 0, 1))
    strides = (2, 2)
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005
    dt = 0.001

    neuron_type = LoihiLIF(tau_rc=tau_rc, tau_ref=tau_ref)

    pres_time = 0.1

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        u = nengo.Node(test_x.ravel(), label="u")

        a = nengo.Ensemble(input_shape.size,
                           1,
                           neuron_type=LoihiSpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([40 / channels]),
                           intercepts=nengo.dists.Choice([0]),
                           label='a')
        model.config[a].on_chip = False

        if channels == 1:
            nengo.Connection(u, a.neurons, transform=1, synapse=None)
        elif channels == 2:
            # encode image into spikes using two channels (on/off)
            if input_shape.channels_last:
                nengo.Connection(u, a.neurons[0::2], transform=1, synapse=None)
                nengo.Connection(u,
                                 a.neurons[1::2],
                                 transform=-1,
                                 synapse=None)
            else:
                k = input_shape.spatial_shape[0] * input_shape.spatial_shape[1]
                nengo.Connection(u, a.neurons[:k], transform=1, synapse=None)
                nengo.Connection(u, a.neurons[k:], transform=-1, synapse=None)

            filters = np.concatenate([filters, -filters], axis=2)
        else:
            raise ValueError("Test not configured for more than two channels")

        conv2d_transform = nengo_transforms.Convolution(
            8,
            input_shape,
            strides=strides,
            kernel_size=(7, 7),
            channels_last=channels_last,
            init=filters)

        output_shape = conv2d_transform.output_shape

        gain, bias = neuron_type.gain_bias(max_rates=100, intercepts=0)
        gain = gain * 0.01  # account for `a` max_rates
        b = nengo.Ensemble(output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([gain[0]]),
                           bias=nengo.dists.Choice([bias[0]]),
                           label='b')
        nengo.Connection(a.neurons,
                         b.neurons,
                         synapse=tau_s,
                         transform=conv2d_transform)

        bp = nengo.Probe(b.neurons)

    with nengo.Simulator(model, dt=dt, optimize=False) as sim:
        sim.run(pres_time)
    ref_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape)

    # Currently, non-gpu TensorFlow does not support channels first in conv
    use_nengo_dl = HAS_DL and channels_last
    ndl_out = np.zeros_like(ref_out)
    if use_nengo_dl:
        with nengo_dl.Simulator(model, dt=dt) as sim_dl:
            sim_dl.run(pres_time)
        ndl_out = sim_dl.data[bp].mean(axis=0).reshape(output_shape.shape)

    with nengo_loihi.Simulator(model, dt=dt, target='simreal') as sim_real:
        sim_real.run(pres_time)
    real_out = sim_real.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, dt=dt) as sim_loihi:
        if "loihi" in sim_loihi.sims:
            sim_loihi.sims["loihi"].snip_max_spikes_per_step = 800
        sim_loihi.run(pres_time)
    sim_out = sim_loihi.data[bp].mean(axis=0).reshape(output_shape.shape)

    if not output_shape.channels_last:
        ref_out = np.transpose(ref_out, (1, 2, 0))
        ndl_out = np.transpose(ndl_out, (1, 2, 0))
        real_out = np.transpose(real_out, (1, 2, 0))
        sim_out = np.transpose(sim_out, (1, 2, 0))

    out_max = max(ref_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(np.transpose(ref_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(np.transpose(ndl_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(np.transpose(sim_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    if use_nengo_dl:
        assert allclose(ndl_out, ref_out, atol=1e-5, rtol=1e-5)
    assert allclose(real_out, ref_out, atol=1, rtol=1e-3)
    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)
コード例 #28
0
def test_split_ensembles(Simulator, seed, rng, plt, allclose):
    b_fn = lambda x: x**2

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        u = nengo.Node(lambda t: np.sin(4 * np.pi * t))
        up = nengo.Probe(u, synapse=0.03)

        # test auto-splitting large block
        a = nengo.Ensemble(1100, 1, label="a")
        nengo.Connection(u, a, synapse=None)

        ap = nengo.Probe(a, synapse=0.03)

        # test connection between two split blocks
        b = nengo.Ensemble(400, 1, label="b", seed=seed + 1)
        nengo.Connection(a, b, function=b_fn, seed=seed + 2)
        net.config[b].block_shape = nengo_loihi.BlockShape((134,), (400,))

        bp = nengo.Probe(b, synapse=0.03)
        bp10 = nengo.Probe(b[:10], synapse=0.03)

        # have one block not be split
        c = nengo.Ensemble(400, 1, label="c", seed=seed + 1)
        nengo.Connection(a, c, function=b_fn, seed=seed + 2)

        cp = nengo.Probe(c, synapse=0.03)

        # TODO: uncomment when we allow connections to neuron slices

        # ensemble with input to not all blocks, to check synapse splitting,
        # specifically the `if len(axon_ids) == 0: continue` in `split_syanpse`.
        # However we currently don't allow connections to neuron slices, so ignore.
        # d_enc = nengo.dists.UniformHypersphere(surface=True).sample(400, d=1, rng=rng)
        # d = nengo.Ensemble(400, 1, label="d", encoders=d_enc)
        # net.config[d].block_shape = nengo_loihi.BlockShape((134,), (400,))
        # nengo.Connection(a, d.neurons[:200], transform=d_enc[:200])
        # nengo.Connection(a, d.neurons[200:], transform=d_enc[200:])

    with Simulator(net) as sim:
        sim.run(0.5)

        assert len(sim.model.objs[a]["out"]) == 2
        assert len(sim.model.objs[b]["out"]) == 3
        assert len(sim.model.objs[c]["out"]) == 1

    y = b_fn(nengo.synapses.Lowpass(0.01).filt(sim.data[up], dt=sim.dt))
    plt.plot(sim.trange(), sim.data[up], "k", label="Ideal x")
    plt.plot(sim.trange(), sim.data[ap], label="x")
    plt.plot(sim.trange(), y, "k", label="Ideal x ** 2")
    plt.plot(sim.trange(), sim.data[bp], label="x ** 2, two blocks")
    plt.plot(sim.trange(), sim.data[cp], label="x ** 2, one block")
    plt.legend()

    assert allclose(sim.data[ap], sim.data[up], atol=0.15)

    assert allclose(sim.data[bp10], sim.data[bp][:, :10])

    # b and c have same seeds, so should be very similar. However, since one
    # is split and one is not, discretizing the blocks after splitting means
    # that there will be slight numerical differences.
    assert allclose(sim.data[cp], sim.data[bp], atol=0.02)

    assert allclose(sim.data[bp], y, atol=0.2)
コード例 #29
0
def test_conv_preslice(on_chip, Simulator, plt):
    conv2d = pytest.importorskip("nengo._vendor.npconv2d.conv2d")

    kernel = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]], dtype=float)
    kernel /= kernel.max()

    image = np.array(
        [
            [1, 2, 1, 2, 0],
            [2, 3, 2, 1, 1],
            [1, 2, 1, 2, 3],
            [2, 3, 2, 1, 1],
            [1, 2, 1, 2, 0],
        ],
        dtype=float,
    )
    image /= image.max()

    image2 = np.column_stack([c * x for c in image.T for x in (1, -1)])

    input_gain = 149.0

    neuron_type = nengo.SpikingRectifiedLinear()
    loihi_neuron = LoihiSpikingRectifiedLinear()
    layer0_neuron = loihi_neuron if on_chip else neuron_type

    y_ref = layer0_neuron.rates(image.ravel(), input_gain, 0)
    y_ref = conv2d.conv2d(y_ref.reshape((1, 5, 5, 1)),
                          kernel.reshape((3, 3, 1, 1)),
                          pad="VALID")
    y_ref = loihi_neuron.rates(y_ref.ravel(), 1.0, 0.0).reshape((3, 3))

    with nengo.Network() as net:
        nengo_loihi.add_params(net)

        u = nengo.Node(image2.ravel())
        a = nengo.Ensemble(
            50,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([input_gain]),
            bias=nengo.dists.Choice([0]),
        )
        net.config[a].on_chip = on_chip

        transform = nengo_transforms.Convolution(n_filters=1,
                                                 input_shape=(5, 5, 1),
                                                 init=kernel.reshape(
                                                     (3, 3, 1, 1)))

        b = nengo.Ensemble(
            transform.output_shape.size,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([1]),
            bias=nengo.dists.Choice([0]),
        )

        nengo.Connection(u, a.neurons, synapse=None)
        nengo.Connection(a.neurons[::2], b.neurons, transform=transform)
        bp = nengo.Probe(b.neurons, synapse=nengo.Alpha(0.02))

    with Simulator(net) as sim:
        assert sim.precompute is True
        sim.run(0.3)

    y_ref = y_ref / input_gain
    y = sim.data[bp][-1].reshape((3, -1)) / input_gain

    plt.subplot(121)
    plt.imshow(y_ref)
    plt.colorbar()
    plt.subplot(122)
    plt.imshow(y)
    plt.colorbar()

    assert np.allclose(y, y_ref, atol=0.02, rtol=0.1)
コード例 #30
0
def test_seeds(precompute, Simulator, seed):
    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        e0 = nengo.Ensemble(1, 1)
        e1 = nengo.Ensemble(1, 1, seed=2)
        e2 = nengo.Ensemble(1, 1)
        net.config[e2].on_chip = False
        nengo.Connection(e0, e1)
        nengo.Connection(e0, e2)

        with nengo.Network():
            n = nengo.Node(0)
            e = nengo.Ensemble(1, 1)
            nengo.Node(1)
            nengo.Connection(n, e)
            nengo.Probe(e)

        with nengo.Network(seed=8):
            nengo.Ensemble(8, 1, seed=3)
            nengo.Node(1)

    # --- test that seeds are the same as nengo ref simulator
    ref = nengo.Simulator(net)

    with Simulator(net, precompute=precompute) as sim:
        for obj in net.all_objects:
            on_chip = (not isinstance(obj, nengo.Node)
                       and (not isinstance(obj, nengo.Ensemble)
                            or net.config[obj].on_chip))

            seed = sim.model.seeds.get(obj, None)
            assert seed is None or seed == ref.model.seeds[obj]
            if on_chip:
                assert seed is not None
            if obj in sim.model.seeded:
                assert sim.model.seeded[obj] == ref.model.seeded[obj]

            if precompute:
                seed0 = sim.sims["host_pre"].model.seeds.get(obj, None)
                assert seed0 is None or seed0 == ref.model.seeds[obj]
                seed1 = sim.sims["host"].model.seeds.get(obj, None)
                assert seed1 is None or seed1 == ref.model.seeds[obj]
            else:
                seed0 = sim.sims["host"].model.seeds.get(obj, None)
                assert seed0 is None or seed0 == ref.model.seeds[obj]
                seed1 = None

            if not on_chip:
                assert seed0 is not None or seed1 is not None

    # --- test that seeds that we set are preserved after splitting
    model = nengo_loihi.builder.Model()
    for i, o in enumerate(net.all_objects):
        model.seeds[o] = i

    with Simulator(net, model=model, precompute=precompute) as sim:
        for i, o in enumerate(net.all_objects):
            for name, subsim in sim.sims.items():
                if name.startswith("host"):
                    assert subsim.model.seeds[o] == i