def test_no_partitioning(self): # Create the constraint constraint = pac.Constraint(100, 0.9) # Create the constraint -> usage mapping constraints = {constraint: lambda sl: sl.stop - sl.start + 10} # Perform the partitioning assert list(pac.partition(slice(0, 80), constraints)) == [slice(0, 80)] assert list(pac.partition(slice(80), constraints)) == [slice(0, 80)]
def make_vertices(self, model, n_steps): """Create the vertices to be simulated on the machine.""" # Create the system region self.system_region = SystemRegion(model.machine_timestep, self.period is not None, n_steps) # Get all the outgoing signals to determine how big the size out is and # to build a list of keys. sigs_conns = model.get_signals_from_object(self) if len(sigs_conns) == 0: return netlistspec([]) keys = list() self.transmission_parameters = list() for sig, transmission_params in sigs_conns[OutputPort.standard]: # Add the keys for this connection transform, sig_keys = get_transform_keys(sig, transmission_params) keys.extend(sig_keys) self.transmission_parameters.append((transmission_params, transform)) size_out = len(keys) # Build the keys region self.keys_region = regions.KeyspacesRegion( keys, [regions.KeyField({"cluster": "cluster"})], partitioned_by_atom=True ) # Create the output region self.output_region = regions.MatrixRegion( np.zeros((n_steps, size_out)), sliced_dimension=regions.MatrixPartitioning.columns ) self.regions = [self.system_region, self.keys_region, self.output_region] # Partition by output dimension to create vertices transmit_constraint = partition.Constraint(10) sdram_constraint = partition.Constraint(8*2**20) # Max 8MiB constraints = { transmit_constraint: lambda s: s.stop - s.start, sdram_constraint: ( lambda s: regions.utils.sizeof_regions(self.regions, s)), } for sl in partition.partition(slice(0, size_out), constraints): # Determine the resources resources = { Cores: 1, SDRAM: regions.utils.sizeof_regions(self.regions, sl), } vsl = VertexSlice(sl, self._label, get_application("value_source"), resources) self.vertices.append(vsl) # Return the vertices and callback methods return netlistspec(self.vertices, self.load_to_machine, self.before_simulation)
def test_unpartitionable(self): # Create the constraint constraint_a = pac.Constraint(50) # Create the constraint -> usage mapping constraints = {constraint_a: lambda sl: sl.stop - sl.start + 100} # Perform the partitioning with pytest.raises(pac.UnpartitionableError): list(pac.partition(slice(100), constraints))
def test_just_partitionable(self): # Create the constraint constraint_a = pac.Constraint(50) # Create the constraint -> usage mapping constraints = {constraint_a: lambda sl: sl.stop - sl.start + 49} # Perform the partitioning assert (list(pac.partition(slice(100), constraints)) == [slice(n, n+1) for n in range(100)]) # pragma : no cover
def test_just_partitionable(self): # Create the constraint constraint_a = pac.Constraint(50) # Create the constraint -> usage mapping constraints = {constraint_a: lambda sl: sl.stop - sl.start + 49} # Perform the partitioning assert (list(pac.partition(slice(100), constraints)) == [ slice(n, n + 1) for n in range(100) ]) # pragma : no cover
def test_single_partition_step(self): # Create the constraint constraint_a = pac.Constraint(100, .7) constraint_b = pac.Constraint(50) # Create the constraint -> usage mapping constraints = {constraint_a: lambda sl: sl.stop - sl.start + 10, constraint_b: lambda sl: sl.stop - sl.start} # Perform the partitioning assert list(pac.partition(slice(100), constraints)) == [ slice(0, 50), slice(50, 100) ]
def test_single_partition_step(self): # Create the constraint constraint_a = pac.Constraint(100, .7) constraint_b = pac.Constraint(50) # Create the constraint -> usage mapping constraints = { constraint_a: lambda sl: sl.stop - sl.start + 10, constraint_b: lambda sl: sl.stop - sl.start } # Perform the partitioning assert list(pac.partition( slice(100), constraints)) == [slice(0, 50), slice(50, 100)]
def make_vertices(self, model, n_steps): """Construct the data which can be loaded into the memory of a SpiNNaker machine. """ # Build encoders, gain and bias regions params = model.params[self.ensemble] ens_regions = dict() # Convert the encoders combined with the gain to S1615 before creating # the region. encoders_with_gain = params.scaled_encoders ens_regions[EnsembleRegions.encoders] = regions.MatrixRegion( tp.np_to_fix(encoders_with_gain), sliced_dimension=regions.MatrixPartitioning.rows) # Combine the direct input with the bias before converting to S1615 and # creating the region. bias_with_di = params.bias + np.dot(encoders_with_gain, self.direct_input) assert bias_with_di.ndim == 1 ens_regions[EnsembleRegions.bias] = regions.MatrixRegion( tp.np_to_fix(bias_with_di), sliced_dimension=regions.MatrixPartitioning.rows) # Convert the gains to S1615 before creating the region ens_regions[EnsembleRegions.gain] = regions.MatrixRegion( tp.np_to_fix(params.gain), sliced_dimension=regions.MatrixPartitioning.rows) # Extract all the filters from the incoming connections incoming = model.get_signals_to_object(self) (ens_regions[EnsembleRegions.input_filters], ens_regions[EnsembleRegions.input_routing]) = make_filter_regions( incoming[InputPort.standard], model.dt, True, model.keyspaces.filter_routing_tag, width=self.ensemble.size_in ) (ens_regions[EnsembleRegions.inhibition_filters], ens_regions[EnsembleRegions.inhibition_routing]) = \ make_filter_regions( incoming[EnsembleInputPort.global_inhibition], model.dt, True, model.keyspaces.filter_routing_tag, width=1 ) # Extract all the decoders for the outgoing connections and build the # regions for the decoders and the regions for the output keys. outgoing = model.get_signals_from_object(self) if OutputPort.standard in outgoing: decoders, output_keys = \ get_decoders_and_keys(outgoing[OutputPort.standard], True) else: decoders = np.array([]) output_keys = list() size_out = decoders.shape[0] ens_regions[EnsembleRegions.decoders] = regions.MatrixRegion( tp.np_to_fix(decoders / model.dt), sliced_dimension=regions.MatrixPartitioning.rows) ens_regions[EnsembleRegions.keys] = regions.KeyspacesRegion( output_keys, fields=[regions.KeyField({'cluster': 'cluster'})], partitioned_by_atom=True ) # The population length region stores information about groups of # co-operating cores. ens_regions[EnsembleRegions.population_length] = \ regions.ListRegion("I") # The ensemble region contains basic information about the ensemble ens_regions[EnsembleRegions.ensemble] = EnsembleRegion( model.machine_timestep, self.ensemble.size_in) # The neuron region contains information specific to the neuron type ens_regions[EnsembleRegions.neuron] = LIFRegion( model.dt, self.ensemble.neuron_type.tau_rc, self.ensemble.neuron_type.tau_ref ) # Manage profiling n_profiler_samples = 0 self.profiled = getconfig(model.config, self.ensemble, "profile", False) if self.profiled: # Try and get number of samples from config n_profiler_samples = getconfig(model.config, self.ensemble, "profile_num_samples") # If it's not specified, calculate sensible default if n_profiler_samples is None: n_profiler_samples = (len(EnsembleSlice.profiler_tag_names) * n_steps * 2) # Create profiler region ens_regions[EnsembleRegions.profiler] = regions.Profiler( n_profiler_samples) ens_regions[EnsembleRegions.ensemble].n_profiler_samples = \ n_profiler_samples # Manage probes for probe in self.local_probes: if probe.attr in ("output", "spikes"): self.record_spikes = True elif probe.attr == "voltage": self.record_voltages = True else: raise NotImplementedError( "Cannot probe {} on Ensembles".format(probe.attr) ) # Set the flags ens_regions[EnsembleRegions.ensemble].record_spikes = \ self.record_spikes ens_regions[EnsembleRegions.ensemble].record_voltages = \ self.record_voltages # Create the probe recording regions ens_regions[EnsembleRegions.spikes] = regions.SpikeRecordingRegion( n_steps if self.record_spikes else 0) ens_regions[EnsembleRegions.voltages] = regions.VoltageRecordingRegion( n_steps if self.record_voltages else 0) # Create constraints against which to partition, initially assume that # we can devote 16 cores to every problem. sdram_constraint = partition.Constraint(128 * 2**20, 0.9) # 90% of 128MiB dtcm_constraint = partition.Constraint(16 * 64 * 2**10, 0.9) # 90% of 16 cores DTCM # The number of cycles available is 200MHz * the machine timestep; or # 200 * the machine timestep in microseconds. cycles = 200 * model.machine_timestep cpu_constraint = partition.Constraint(cycles * 16, 0.8) # 80% of 16 cores compute # Form the constraints dictionary def _make_constraint(f, size_in, size_out, **kwargs): """Wrap a usage computation method to work with the partitioner.""" def f_(vertex_slice): # Calculate the number of neurons n_neurons = vertex_slice.stop - vertex_slice.start # Call the original method return f(size_in, size_out, n_neurons, **kwargs) return f_ partition_constraints = { sdram_constraint: _make_constraint(_lif_sdram_usage, self.ensemble.size_in, size_out), dtcm_constraint: _make_constraint(_lif_dtcm_usage, self.ensemble.size_in, size_out), cpu_constraint: _make_constraint(_lif_cpu_usage, self.ensemble.size_in, size_out), } # Partition the ensemble to create clusters of co-operating cores self.clusters = list() vertices = list() constraints = list() for sl in partition.partition(slice(0, self.ensemble.n_neurons), partition_constraints): # For each slice we create a cluster of co-operating cores. We # instantiate the cluster and then ask it to produce vertices which # will be added to the netlist. cluster = EnsembleCluster(sl, self.ensemble.size_in, size_out, ens_regions) self.clusters.append(cluster) # Get the vertices for the cluster cluster_vertices = cluster.make_vertices(cycles) vertices.extend(cluster_vertices) # Create a constraint which forces these vertices to be present on # the same chip constraints.append(SameChipConstraint(cluster_vertices)) # Return the vertices and callback methods return netlistspec(vertices, self.load_to_machine, after_simulation_function=self.after_simulation, constraints=constraints)
def make_vertices(self, model, n_steps): """Construct the data which can be loaded into the memory of a SpiNNaker machine. """ # Build encoders, gain and bias regions params = model.params[self.ensemble] ens_regions = dict() # Convert the encoders combined with the gain to S1615 before creating # the region. encoders_with_gain = params.scaled_encoders ens_regions[EnsembleRegions.encoders] = regions.MatrixRegion( tp.np_to_fix(encoders_with_gain), sliced_dimension=regions.MatrixPartitioning.rows) # Combine the direct input with the bias before converting to S1615 and # creating the region. bias_with_di = params.bias + np.dot(encoders_with_gain, self.direct_input) assert bias_with_di.ndim == 1 ens_regions[EnsembleRegions.bias] = regions.MatrixRegion( tp.np_to_fix(bias_with_di), sliced_dimension=regions.MatrixPartitioning.rows) # Convert the gains to S1615 before creating the region ens_regions[EnsembleRegions.gain] = regions.MatrixRegion( tp.np_to_fix(params.gain), sliced_dimension=regions.MatrixPartitioning.rows) # Extract all the filters from the incoming connections incoming = model.get_signals_to_object(self) (ens_regions[EnsembleRegions.input_filters], ens_regions[EnsembleRegions.input_routing]) = make_filter_regions( incoming[InputPort.standard], model.dt, True, model.keyspaces.filter_routing_tag, width=self.ensemble.size_in) (ens_regions[EnsembleRegions.inhibition_filters], ens_regions[EnsembleRegions.inhibition_routing]) = \ make_filter_regions( incoming[EnsembleInputPort.global_inhibition], model.dt, True, model.keyspaces.filter_routing_tag, width=1 ) # Extract all the decoders for the outgoing connections and build the # regions for the decoders and the regions for the output keys. outgoing = model.get_signals_from_object(self) if OutputPort.standard in outgoing: decoders, output_keys = \ get_decoders_and_keys(outgoing[OutputPort.standard], True) else: decoders = np.array([]) output_keys = list() size_out = decoders.shape[0] ens_regions[EnsembleRegions.decoders] = regions.MatrixRegion( tp.np_to_fix(decoders / model.dt), sliced_dimension=regions.MatrixPartitioning.rows) ens_regions[EnsembleRegions.keys] = regions.KeyspacesRegion( output_keys, fields=[regions.KeyField({'cluster': 'cluster'})], partitioned_by_atom=True) # The population length region stores information about groups of # co-operating cores. ens_regions[EnsembleRegions.population_length] = \ regions.ListRegion("I") # The ensemble region contains basic information about the ensemble ens_regions[EnsembleRegions.ensemble] = EnsembleRegion( model.machine_timestep, self.ensemble.size_in) # The neuron region contains information specific to the neuron type ens_regions[EnsembleRegions.neuron] = LIFRegion( model.dt, self.ensemble.neuron_type.tau_rc, self.ensemble.neuron_type.tau_ref) # Manage profiling n_profiler_samples = 0 self.profiled = getconfig(model.config, self.ensemble, "profile", False) if self.profiled: # Try and get number of samples from config n_profiler_samples = getconfig(model.config, self.ensemble, "profile_num_samples") # If it's not specified, calculate sensible default if n_profiler_samples is None: n_profiler_samples = (len(EnsembleSlice.profiler_tag_names) * n_steps * 2) # Create profiler region ens_regions[EnsembleRegions.profiler] = regions.Profiler( n_profiler_samples) ens_regions[EnsembleRegions.ensemble].n_profiler_samples = \ n_profiler_samples # Manage probes for probe in self.local_probes: if probe.attr in ("output", "spikes"): self.record_spikes = True elif probe.attr == "voltage": self.record_voltages = True else: raise NotImplementedError( "Cannot probe {} on Ensembles".format(probe.attr)) # Set the flags ens_regions[EnsembleRegions.ensemble].record_spikes = \ self.record_spikes ens_regions[EnsembleRegions.ensemble].record_voltages = \ self.record_voltages # Create the probe recording regions ens_regions[EnsembleRegions.spikes] = regions.SpikeRecordingRegion( n_steps if self.record_spikes else 0) ens_regions[EnsembleRegions.voltages] = regions.VoltageRecordingRegion( n_steps if self.record_voltages else 0) # Create constraints against which to partition, initially assume that # we can devote 16 cores to every problem. sdram_constraint = partition.Constraint(128 * 2**20, 0.9) # 90% of 128MiB dtcm_constraint = partition.Constraint(16 * 64 * 2**10, 0.9) # 90% of 16 cores DTCM # The number of cycles available is 200MHz * the machine timestep; or # 200 * the machine timestep in microseconds. cycles = 200 * model.machine_timestep cpu_constraint = partition.Constraint(cycles * 16, 0.8) # 80% of 16 cores compute # Form the constraints dictionary def _make_constraint(f, size_in, size_out, **kwargs): """Wrap a usage computation method to work with the partitioner.""" def f_(vertex_slice): # Calculate the number of neurons n_neurons = vertex_slice.stop - vertex_slice.start # Call the original method return f(size_in, size_out, n_neurons, **kwargs) return f_ partition_constraints = { sdram_constraint: _make_constraint(_lif_sdram_usage, self.ensemble.size_in, size_out), dtcm_constraint: _make_constraint(_lif_dtcm_usage, self.ensemble.size_in, size_out), cpu_constraint: _make_constraint(_lif_cpu_usage, self.ensemble.size_in, size_out), } # Partition the ensemble to create clusters of co-operating cores self.clusters = list() vertices = list() constraints = list() for sl in partition.partition(slice(0, self.ensemble.n_neurons), partition_constraints): # For each slice we create a cluster of co-operating cores. We # instantiate the cluster and then ask it to produce vertices which # will be added to the netlist. cluster = EnsembleCluster(sl, self.ensemble.size_in, size_out, ens_regions) self.clusters.append(cluster) # Get the vertices for the cluster cluster_vertices = cluster.make_vertices(cycles) vertices.extend(cluster_vertices) # Create a constraint which forces these vertices to be present on # the same chip constraints.append(SameChipConstraint(cluster_vertices)) # Return the vertices and callback methods return netlistspec(vertices, self.load_to_machine, after_simulation_function=self.after_simulation, constraints=constraints)