コード例 #1
0
ファイル: dataobject.py プロジェクト: INM-6/python-neo
        def _check_single_elem(element):
            # Nested array annotations not allowed currently
            # If element is a list or a np.ndarray, it's not conform except if it's a quantity of
            # length 1
            if isinstance(element, list) or (isinstance(element, np.ndarray) and not (
                    isinstance(element, pq.Quantity) and (
                    element.shape == () or element.shape == (1,)))):
                raise ValueError("Array annotations should only be 1-dimensional")
            if isinstance(element, dict):
                raise ValueError("Dictionaries are not supported as array annotations")

            # Perform regular check for elements of array or list
            _check_annotations(element)
コード例 #2
0
ファイル: dataobject.py プロジェクト: gilad4591/malDetect
        def _check_single_elem(element):
            # Nested array annotations not allowed currently
            # If element is a list or a np.ndarray, it's not conform except if it's a quantity of
            # length 1
            if isinstance(element, list) or (isinstance(element, np.ndarray) and not (
                    isinstance(element, pq.Quantity) and (
                    element.shape == () or element.shape == (1,)))):
                raise ValueError("Array annotations should only be 1-dimensional")
            if isinstance(element, dict):
                raise ValueError("Dictionaries are not supported as array annotations")

            # Perform regular check for elements of array or list
            _check_annotations(element)
コード例 #3
0
ファイル: sound.py プロジェクト: siriuslee/neosound
    def annotate(self, **annotations):
        """
        Add an annotation to the sound
        :param annotations: comma-separated key-value pairs to be added to the sound objects annotations. All values
        are also stored in the database.

        Example:
        sound.annotate(type="sentence", transcript="This is a test")
        sound.annotations["type"]
        sound.annotations["transcript"]
        """

        _check_annotations(annotations)
        self.annotations.update(annotations)
        self.manager.database.store_annotations(self.id, **annotations)
コード例 #4
0
ファイル: sound.py プロジェクト: theunissenlab/neosound
    def annotate(self, **annotations):
        """
        Add an annotation to the sound
        :param annotations: comma-separated key-value pairs to be added to the sound objects annotations. All values
        are also stored in the database.

        Example:
        sound.annotate(type="sentence", transcript="This is a test")
        sound.annotations["type"]
        sound.annotations["transcript"]
        """

        _check_annotations(annotations)
        self.annotations.update(annotations)
        self.manager.database.store_annotations(self.id, **annotations)
コード例 #5
0
ファイル: test_base.py プロジェクト: CINPLA/python-neo
 def test__check_annotations__dict(self):
     names = ['value%s' % i for i in range(len(self.values))]
     values = dict(zip(names, self.values))
     _check_annotations(values)
コード例 #6
0
ファイル: test_base.py プロジェクト: CINPLA/python-neo
 def test__check_annotations__tuple(self):
     _check_annotations(tuple(self.values))
     _check_annotations((self.values, self.values))
コード例 #7
0
ファイル: test_base.py プロジェクト: CINPLA/python-neo
 def test__check_annotations__list(self):
     _check_annotations(self.values)
コード例 #8
0
ファイル: test_base.py プロジェクト: CINPLA/python-neo
 def test__check_annotations__valid_dtypes(self):
     for value in self.values:
         _check_annotations(value)
コード例 #9
0
ファイル: dataobject.py プロジェクト: wvangeit/python-neo
def _normalize_array_annotations(value, length):
    """Check consistency of array annotations

    Recursively check that value is either an array or list containing only "simple" types
    (number, string, date/time) or is a dict of those.

    Args:
        :value: (np.ndarray, list or dict) value to be checked for consistency
        :length: (int) required length of the array annotation

    Returns:
        np.ndarray The array_annotations from value in correct form

    Raises:
        ValueError: In case value is not accepted as array_annotation(s)

    """

    # First stage, resolve dict of annotations into single annotations
    if isinstance(value, dict):
        for key in value.keys():
            if isinstance(value[key], dict):
                raise ValueError(
                    "Nested dicts are not allowed as array annotations")
            value[key] = _normalize_array_annotations(value[key], length)

    elif value is None:
        raise ValueError("Array annotations must not be None")
    # If not array annotation, pass on to regular check and make it a list, that is checked again
    # This covers array annotations with length 1
    elif not isinstance(value,
                        (list, np.ndarray)) or (isinstance(value, pq.Quantity)
                                                and value.shape == ()):
        _check_annotations(value)
        value = _normalize_array_annotations(np.array([value]), length)

    # If array annotation, check for correct length, only single dimension and allowed data
    else:
        # Get length that is required for array annotations, which is equal to the length
        # of the object's data
        own_length = length

        # Escape check if empty array or list and just annotate an empty array (length 0)
        # This enables the user to easily create dummy array annotations that will be filled
        # with data later on
        if len(value) == 0:
            if not isinstance(value, np.ndarray):
                value = np.ndarray((0, ))
            val_length = own_length
        else:
            # Note: len(o) also works for np.ndarray, it then uses the first dimension,
            # which is exactly the desired behaviour here
            val_length = len(value)

        if not own_length == val_length:
            raise ValueError(
                "Incorrect length of array annotation: {} != {}".format(
                    val_length, own_length))

        # Local function used to check single elements of a list or an array
        # They must not be lists or arrays and fit the usual annotation data types
        def _check_single_elem(element):
            # Nested array annotations not allowed currently
            # If element is a list or a np.ndarray, it's not conform except if it's a quantity of
            # length 1
            if isinstance(element, list) or (
                    isinstance(element, np.ndarray)
                    and not (isinstance(element, pq.Quantity) and
                             (element.shape == () or element.shape == (1, )))):
                raise ValueError(
                    "Array annotations should only be 1-dimensional")
            if isinstance(element, dict):
                raise ValueError(
                    "Dictionaries are not supported as array annotations")

            # Perform regular check for elements of array or list
            _check_annotations(element)

        # Arrays only need testing of single element to make sure the others are the same
        if isinstance(value, np.ndarray):
            # Type of first element is representative for all others
            # Thus just performing a check on the first element is enough
            # Even if it's a pq.Quantity, which can be scalar or array, this is still true
            # Because a np.ndarray cannot contain scalars and sequences simultaneously

            # If length of data is 0, then nothing needs to be checked
            if len(value):
                # Perform check on first element
                _check_single_elem(value[0])

            return value

        # In case of list, it needs to be ensured that all data are of the same type
        else:
            # Conversion to numpy array makes all elements same type
            # Converts elements to most general type

            try:
                value = np.array(value)
            # Except when scalar and non-scalar values are mixed, this causes conversion to fail
            except ValueError as e:
                msg = str(e)
                if "setting an array element with a sequence." in msg:
                    raise ValueError(
                        "Scalar values and arrays/lists cannot be "
                        "combined into a single array annotation")
                else:
                    raise e

            # If most specialized data type that possibly fits all elements is object,
            # raise an Error with a telling error message, because this means the elements
            # are not compatible
            if value.dtype == object:
                raise ValueError(
                    "Cannot convert list of incompatible types into a single"
                    " array annotation")

            # Check the first element for correctness
            # If its type is correct for annotations, all others are correct as well
            # Note: Emtpy lists cannot reach this point
            _check_single_elem(value[0])

    return value
コード例 #10
0
ファイル: test_base.py プロジェクト: vhazocar/python-neo
 def test__check_annotations__dict(self):
     names = ['value%s' % i for i in range(len(self.values))]
     values = dict(zip(names, self.values))
     _check_annotations(values)
コード例 #11
0
ファイル: test_base.py プロジェクト: vhazocar/python-neo
 def test__check_annotations__tuple(self):
     _check_annotations(tuple(self.values))
     _check_annotations((self.values, self.values))
コード例 #12
0
ファイル: test_base.py プロジェクト: vhazocar/python-neo
 def test__check_annotations__list(self):
     _check_annotations(self.values)
コード例 #13
0
ファイル: test_base.py プロジェクト: vhazocar/python-neo
 def test__check_annotations__valid_dtypes(self):
     for value in self.values:
         _check_annotations(value)
コード例 #14
0
ファイル: dataobject.py プロジェクト: INM-6/python-neo
def _normalize_array_annotations(value, length):
    """Check consistency of array annotations

    Recursively check that value is either an array or list containing only "simple" types
    (number, string, date/time) or is a dict of those.

    Args:
        :value: (np.ndarray, list or dict) value to be checked for consistency
        :length: (int) required length of the array annotation

    Returns:
        np.ndarray The array_annotations from value in correct form

    Raises:
        ValueError: In case value is not accepted as array_annotation(s)

    """

    # First stage, resolve dict of annotations into single annotations
    if isinstance(value, dict):
        for key in value.keys():
            if isinstance(value[key], dict):
                raise ValueError("Nested dicts are not allowed as array annotations")
            value[key] = _normalize_array_annotations(value[key], length)

    elif value is None:
        raise ValueError("Array annotations must not be None")
    # If not array annotation, pass on to regular check and make it a list, that is checked again
    # This covers array annotations with length 1
    elif not isinstance(value, (list, np.ndarray)) or (
            isinstance(value, pq.Quantity) and value.shape == ()):
        _check_annotations(value)
        value = _normalize_array_annotations(np.array([value]), length)

    # If array annotation, check for correct length, only single dimension and allowed data
    else:
        # Get length that is required for array annotations, which is equal to the length
        # of the object's data
        own_length = length

        # Escape check if empty array or list and just annotate an empty array (length 0)
        # This enables the user to easily create dummy array annotations that will be filled
        # with data later on
        if len(value) == 0:
            if not isinstance(value, np.ndarray):
                value = np.ndarray((0,))
            val_length = own_length
        else:
            # Note: len(o) also works for np.ndarray, it then uses the first dimension,
            # which is exactly the desired behaviour here
            val_length = len(value)

        if not own_length == val_length:
            raise ValueError(
                "Incorrect length of array annotation: {} != {}".format(val_length, own_length))

        # Local function used to check single elements of a list or an array
        # They must not be lists or arrays and fit the usual annotation data types
        def _check_single_elem(element):
            # Nested array annotations not allowed currently
            # If element is a list or a np.ndarray, it's not conform except if it's a quantity of
            # length 1
            if isinstance(element, list) or (isinstance(element, np.ndarray) and not (
                    isinstance(element, pq.Quantity) and (
                    element.shape == () or element.shape == (1,)))):
                raise ValueError("Array annotations should only be 1-dimensional")
            if isinstance(element, dict):
                raise ValueError("Dictionaries are not supported as array annotations")

            # Perform regular check for elements of array or list
            _check_annotations(element)

        # Arrays only need testing of single element to make sure the others are the same
        if isinstance(value, np.ndarray):
            # Type of first element is representative for all others
            # Thus just performing a check on the first element is enough
            # Even if it's a pq.Quantity, which can be scalar or array, this is still true
            # Because a np.ndarray cannot contain scalars and sequences simultaneously

            # If length of data is 0, then nothing needs to be checked
            if len(value):
                # Perform check on first element
                _check_single_elem(value[0])

            return value

        # In case of list, it needs to be ensured that all data are of the same type
        else:
            # Conversion to numpy array makes all elements same type
            # Converts elements to most general type

            try:
                value = np.array(value)
            # Except when scalar and non-scalar values are mixed, this causes conversion to fail
            except ValueError as e:
                msg = str(e)
                if "setting an array element with a sequence." in msg:
                    raise ValueError("Scalar values and arrays/lists cannot be "
                                     "combined into a single array annotation")
                else:
                    raise e

            # If most specialized data type that possibly fits all elements is object,
            # raise an Error with a telling error message, because this means the elements
            # are not compatible
            if value.dtype == object:
                raise ValueError("Cannot convert list of incompatible types into a single"
                                 " array annotation")

            # Check the first element for correctness
            # If its type is correct for annotations, all others are correct as well
            # Note: Emtpy lists cannot reach this point
            _check_single_elem(value[0])

    return value