コード例 #1
0
    def setUp(self):
        spike_time_array = np.array([0.5, 0.6, 0.7, 1.1, 11.2, 23.6, 88.5, 99.2])
        channel_id_array = np.array([0, 0, 1, 2, 1, 0, 2, 0])
        all_channel_ids = (0, 1, 2, 3)
        self.stl_from_array = SpikeTrainList.from_spike_time_array(
            spike_time_array,
            channel_id_array,
            all_channel_ids=all_channel_ids,
            units='ms',
            t_start=0 * pq.ms,
            t_stop=100.0 * pq.ms,
            identifier=["A", "B", "C", "D"]  # annotation
        )

        self.stl_from_obj_list = SpikeTrainList(items=(
            SpikeTrain([0.5, 0.6, 23.6, 99.2], units="ms",
                       t_start=0 * pq.ms, t_stop=100.0 * pq.ms, channel_id=101),
            SpikeTrain([0.0007, 0.0112], units="s", t_start=0 * pq.ms, t_stop=100.0 * pq.ms,
                       channel_id=102),
            SpikeTrain([1100, 88500], units="us", t_start=0 * pq.ms, t_stop=100.0 * pq.ms,
                       channel_id=103),
            SpikeTrain([], units="ms", t_start=0 * pq.ms, t_stop=100.0 * pq.ms,
                       channel_id=104),
        ))

        self.stl_from_obj_list_incl_proxy = SpikeTrainList(items=(
            SpikeTrain([0.5, 0.6, 23.6, 99.2], units="ms",
                       t_start=0 * pq.ms, t_stop=100.0 * pq.ms),
            SpikeTrain([0.0007, 0.0112], units="s", t_start=0 * pq.ms, t_stop=100.0 * pq.ms),
            SpikeTrainProxy(rawio=MockRawIO(), spike_channel_index=0),
            SpikeTrain([], units="ms", t_start=0 * pq.ms, t_stop=100.0 * pq.ms),
        ))
コード例 #2
0
 def test_spade_msip_spiketrainlist(self):
     output_msip = spade.spade(SpikeTrainList(self.msip),
                               self.bin_size,
                               self.winlen,
                               approx_stab_pars=dict(
                                   n_subsets=self.n_subset,
                                   stability_thresh=self.stability_thresh),
                               n_surr=self.n_surr,
                               alpha=self.alpha,
                               psr_param=self.psr_param,
                               stat_corr='no',
                               output_format='patterns')['patterns']
     elements_msip = []
     occ_msip = []
     lags_msip = []
     # collecting spade output
     for out in output_msip:
         elements_msip.append(out['neurons'])
         occ_msip.append(list(out['times'].magnitude))
         lags_msip.append(list(out['lags'].magnitude))
     elements_msip = sorted(elements_msip, key=len)
     occ_msip = sorted(occ_msip, key=len)
     lags_msip = sorted(lags_msip, key=len)
     # check neurons in the patterns
     assert_array_equal(elements_msip, self.elements_msip)
     # check the occurrences time of the patters
     assert_array_equal(occ_msip, self.occ_msip)
     # check the lags
     assert_array_equal(lags_msip, self.lags_msip)
コード例 #3
0
ファイル: segment.py プロジェクト: sanjayankur31/python-neo
 def __init__(self,
              name=None,
              description=None,
              file_origin=None,
              file_datetime=None,
              rec_datetime=None,
              index=None,
              **annotations):
     '''
     Initialize a new :class:`Segment` instance.
     '''
     super().__init__(name=name,
                      description=description,
                      file_origin=file_origin,
                      **annotations)
     self.spiketrains = SpikeTrainList(segment=self)
     self.file_datetime = file_datetime
     self.rec_datetime = rec_datetime
     self.index = index
コード例 #4
0
    def test_regression_431(self):
        """
        Addresses issue 431
        This unittest addresses an issue where a SpikeTrainList obejct was not
        correctly handled by the constructor
        """
        st1 = neo.SpikeTrain(times=np.array([1, 2, 3]) * pq.ms,
                             t_start=0 * pq.ms,
                             t_stop=10 * pq.ms)
        st2 = neo.SpikeTrain(times=np.array([4, 5, 6]) * pq.ms,
                             t_start=0 * pq.ms,
                             t_stop=10 * pq.ms)
        real_list = [st1, st2]
        spiketrainlist = SpikeTrainList([st1, st2])

        real_list_binary = cv.BinnedSpikeTrain(real_list, bin_size=1 * pq.ms)
        spiketrainlist_binary = cv.BinnedSpikeTrain(spiketrainlist,
                                                    bin_size=1 * pq.ms)

        assert_array_equal(real_list_binary.to_array(),
                           spiketrainlist_binary.to_array())
コード例 #5
0
    def test__filter_none(self):
        for segment in self.segments:
            targ = []
            # collecting all data objects in target block
            targ.extend(segment.analogsignals)
            targ.extend(segment.epochs)
            targ.extend(segment.events)
            targ.extend(segment.irregularlysampledsignals)
            targ.extend(segment.spiketrains)
            targ.extend(segment.imagesequences)

            # occasionally we randomly get only spike trains,
            # and then we have to convert to a SpikeTrainList
            # to match the output of segment.filter
            if all(isinstance(obj, SpikeTrain) for obj in targ):
                targ = SpikeTrainList(items=targ, segment=segment)

            res0 = segment.filter()
            res1 = segment.filter({})
            res2 = segment.filter([])
            res3 = segment.filter([{}])
            res4 = segment.filter([{}, {}])
            res5 = segment.filter([{}, {}])
            res6 = segment.filter(targdict={})
            res7 = segment.filter(targdict=[])
            res8 = segment.filter(targdict=[{}])
            res9 = segment.filter(targdict=[{}, {}])

            assert_same_sub_schema(res0, targ)
            assert_same_sub_schema(res1, targ)
            assert_same_sub_schema(res2, targ)
            assert_same_sub_schema(res3, targ)
            assert_same_sub_schema(res4, targ)
            assert_same_sub_schema(res5, targ)
            assert_same_sub_schema(res6, targ)
            assert_same_sub_schema(res7, targ)
            assert_same_sub_schema(res8, targ)
            assert_same_sub_schema(res9, targ)
コード例 #6
0
ファイル: neo_tools.py プロジェクト: TRuikes/elephant
def get_all_spiketrains(container):
    """
    Get all `neo.Spiketrain` objects from a container.

    The objects can be any list, dict, or other iterable or mapping containing
    spiketrains, as well as any Neo object that can hold spiketrains:
    `neo.Block`, `neo.ChannelIndex`, `neo.Unit`, and `neo.Segment`.

    Containers are searched recursively, so the objects can be nested
    (such as a list of blocks).

    Parameters
    ----------
    container : list, tuple, iterable, dict, neo.Block, neo.Segment, neo.Unit,
        neo.ChannelIndex
        The container for the spiketrains.

    Returns
    -------
    list
        A `neo.SpikeTrainList` object of the unique `neo.SpikeTrain` objects in `container`.

    """
    return SpikeTrainList(_get_all_objs(container, 'SpikeTrain'))
コード例 #7
0
    def filter(self,
               targdict=None,
               data=True,
               container=False,
               recursive=True,
               objects=None,
               **kwargs):
        """
        Return a list of child objects matching *any* of the search terms
        in either their attributes or annotations.  Search terms can be
        provided as keyword arguments or a dictionary, either as a positional
        argument after data or to the argument targdict.  targdict can also
        be a list of dictionaries, in which case the filters are applied
        sequentially.  If targdict and kwargs are both supplied, the
        targdict filters are applied first, followed by the kwarg filters.
        A targdict of None or {} corresponds to no filters applied, therefore
        returning all child objects. Default targdict is None.

        If data is True (default), include data objects.
        If container is True (default False), include container objects.
        If recursive is True (default), descend into child containers for
        objects.

        objects (optional) should be the name of a Neo object type,
        a neo object class, or a list of one or both of these.  If specified,
        only these objects will be returned. If not specified any type of
        object is  returned. Default is None.
        Note that if recursive is True, containers not in objects will still
        be descended into. This overrides data and container.


        Examples::

            >>> obj.filter(name="Vm")
            >>> obj.filter(objects=neo.SpikeTrain)
            >>> obj.filter(targdict={'myannotation':3})
        """

        if isinstance(targdict, str):
            raise TypeError("filtering is based on key-value pairs."
                            " Only a single string was provided.")

        # if objects are specified, get the classes
        if objects:
            data = True
            container = True

        if objects == SpikeTrain:
            children = SpikeTrainList()
        else:
            children = []

        # get the objects we want
        if data:
            if recursive:
                children.extend(self.data_children_recur)
            else:
                children.extend(self.data_children)
        if container:
            if recursive:
                children.extend(self.container_children_recur)
            else:
                children.extend(self.container_children)

        return filterdata(children,
                          objects=objects,
                          targdict=targdict,
                          **kwargs)
コード例 #8
0
def filterdata(data, targdict=None, objects=None, **kwargs):
    """
    Return a list of the objects in data matching *any* of the search terms
    in either their attributes or annotations.  Search terms can be
    provided as keyword arguments or a dictionary, either as a positional
    argument after data or to the argument targdict.  targdict can also
    be a list of dictionaries, in which case the filters are applied
    sequentially.  If targdict and kwargs are both supplied, the
    targdict filters are applied first, followed by the kwarg filters.
    A targdict of None or {} and objects = None corresponds to no filters
    applied, therefore returning all child objects.
    Default targdict and objects is None.


    objects (optional) should be the name of a Neo object type,
    a neo object class, or a list of one or both of these.  If specified,
    only these objects will be returned.
    """

    # if objects are specified, get the classes
    if objects:
        if hasattr(objects, 'lower') or isinstance(objects, type):
            objects = [objects]
    elif objects is not None:
        return []

    # handle cases with targdict
    if targdict is None:
        targdict = kwargs
    elif not kwargs:
        pass
    elif hasattr(targdict, 'keys'):
        targdict = [targdict, kwargs]
    else:
        targdict += [kwargs]

    if not targdict:
        results = data

    # if multiple dicts are provided, apply each filter sequentially
    elif not hasattr(targdict, 'keys'):
        # for performance reasons, only do the object filtering on the first
        # iteration
        results = filterdata(data, targdict=targdict[0], objects=objects)
        for targ in targdict[1:]:
            results = filterdata(results, targdict=targ)
        return results
    else:
        # do the actual filtering
        results = []
        for key, value in sorted(targdict.items()):
            for obj in data:
                if (hasattr(obj, key) and getattr(obj, key) == value
                        and all([obj is not res for res in results])):
                    results.append(obj)
                elif (key in obj.annotations and obj.annotations[key] == value
                      and all([obj is not res for res in results])):
                    results.append(obj)

    # keep only objects of the correct classes
    if objects:
        results = [
            result for result in results if result.__class__ in objects
            or result.__class__.__name__ in objects
        ]

    if results and all(isinstance(obj, SpikeTrain) for obj in results):
        return SpikeTrainList(results)
    else:
        return results