def _get_tracking(self, channel, conversion): if channel is not None: eva = Event() ttls = self._kwe['event_types']['TTL']['events'][ 'time_samples'].value event_channels = self._kwe['event_types']['TTL']['events'][ 'user_data']['event_channels'].value event_id = self._kwe['event_types']['TTL']['events']['user_data'][ 'eventID'].value eva.times = (ttls[(event_channels == channel) & (event_id == 1)] / self._attrs['kwe']['sample_rate']) * pq.s eva.name = 'TrackingTTL' posdata = self._kwe['event_types']['Binary_messages']['events'][ 'user_data']['Data'].value node_id = self._kwe['event_types']['Binary_messages']['events'][ 'user_data']['nodeID'].value time_samples = self._kwe['event_types']['Binary_messages']['events'][ 'time_samples'].value sigs = [] for node in self._nodes['OSC Port']: irsig = IrregularlySampledSignal( signal=posdata[node_id == int(node['NodeId'])] * conversion * pq.m, times=(time_samples[node_id == int(node['NodeId'])] / self._attrs['kwe']['sample_rate']) * pq.s, name=node['address']) sigs += [irsig] if channel is not None: return eva, sigs else: return sigs
def read_segment(self, import_neuroshare_segment = True, lazy=False, cascade=True): """ Arguments: import_neuroshare_segment: import neuroshare segment as SpikeTrain with associated waveforms or not imported at all. """ seg = Segment( file_origin = os.path.basename(self.filename), ) if sys.platform.startswith('win'): neuroshare = ctypes.windll.LoadLibrary(self.dllname) elif sys.platform.startswith('linux'): neuroshare = ctypes.cdll.LoadLibrary(self.dllname) neuroshare = DllWithError(neuroshare) #elif sys.platform.startswith('darwin'): # API version info = ns_LIBRARYINFO() neuroshare.ns_GetLibraryInfo(ctypes.byref(info) , ctypes.sizeof(info)) seg.annotate(neuroshare_version = str(info.dwAPIVersionMaj)+'.'+str(info.dwAPIVersionMin)) if not cascade: return seg # open file hFile = ctypes.c_uint32(0) neuroshare.ns_OpenFile(ctypes.c_char_p(self.filename) ,ctypes.byref(hFile)) fileinfo = ns_FILEINFO() neuroshare.ns_GetFileInfo(hFile, ctypes.byref(fileinfo) , ctypes.sizeof(fileinfo)) # read all entities for dwEntityID in range(fileinfo.dwEntityCount): entityInfo = ns_ENTITYINFO() neuroshare.ns_GetEntityInfo( hFile, dwEntityID, ctypes.byref(entityInfo), ctypes.sizeof(entityInfo)) # EVENT if entity_types[entityInfo.dwEntityType] == 'ns_ENTITY_EVENT': pEventInfo = ns_EVENTINFO() neuroshare.ns_GetEventInfo ( hFile, dwEntityID, ctypes.byref(pEventInfo), ctypes.sizeof(pEventInfo)) if pEventInfo.dwEventType == 0: #TEXT pData = ctypes.create_string_buffer(pEventInfo.dwMaxDataLength) elif pEventInfo.dwEventType == 1:#CVS pData = ctypes.create_string_buffer(pEventInfo.dwMaxDataLength) elif pEventInfo.dwEventType == 2:# 8bit pData = ctypes.c_byte(0) elif pEventInfo.dwEventType == 3:# 16bit pData = ctypes.c_int16(0) elif pEventInfo.dwEventType == 4:# 32bit pData = ctypes.c_int32(0) pdTimeStamp = ctypes.c_double(0.) pdwDataRetSize = ctypes.c_uint32(0) ea = Event(name = str(entityInfo.szEntityLabel),) if not lazy: times = [ ] labels = [ ] for dwIndex in range(entityInfo.dwItemCount ): neuroshare.ns_GetEventData ( hFile, dwEntityID, dwIndex, ctypes.byref(pdTimeStamp), ctypes.byref(pData), ctypes.sizeof(pData), ctypes.byref(pdwDataRetSize) ) times.append(pdTimeStamp.value) labels.append(str(pData.value)) ea.times = times*pq.s ea.labels = np.array(labels, dtype ='S') else : ea.lazy_shape = entityInfo.dwItemCount seg.eventarrays.append(ea) # analog if entity_types[entityInfo.dwEntityType] == 'ns_ENTITY_ANALOG': pAnalogInfo = ns_ANALOGINFO() neuroshare.ns_GetAnalogInfo( hFile, dwEntityID,ctypes.byref(pAnalogInfo),ctypes.sizeof(pAnalogInfo) ) dwIndexCount = entityInfo.dwItemCount if lazy: signal = [ ]*pq.Quantity(1, pAnalogInfo.szUnits) else: pdwContCount = ctypes.c_uint32(0) pData = np.zeros( (entityInfo.dwItemCount,), dtype = 'float64') total_read = 0 while total_read< entityInfo.dwItemCount: dwStartIndex = ctypes.c_uint32(total_read) dwStopIndex = ctypes.c_uint32(entityInfo.dwItemCount - total_read) neuroshare.ns_GetAnalogData( hFile, dwEntityID, dwStartIndex, dwStopIndex, ctypes.byref( pdwContCount) , pData[total_read:].ctypes.data_as(ctypes.POINTER(ctypes.c_double))) total_read += pdwContCount.value signal = pq.Quantity(pData, units=pAnalogInfo.szUnits, copy = False) #t_start dwIndex = 0 pdTime = ctypes.c_double(0) neuroshare.ns_GetTimeByIndex( hFile, dwEntityID, dwIndex, ctypes.byref(pdTime)) anaSig = AnalogSignal(signal, sampling_rate = pAnalogInfo.dSampleRate*pq.Hz, t_start = pdTime.value * pq.s, name = str(entityInfo.szEntityLabel), ) anaSig.annotate( probe_info = str(pAnalogInfo.szProbeInfo)) if lazy: anaSig.lazy_shape = entityInfo.dwItemCount seg.analogsignals.append( anaSig ) #segment if entity_types[entityInfo.dwEntityType] == 'ns_ENTITY_SEGMENT' and import_neuroshare_segment: pdwSegmentInfo = ns_SEGMENTINFO() if not str(entityInfo.szEntityLabel).startswith('spks'): continue neuroshare.ns_GetSegmentInfo( hFile, dwEntityID, ctypes.byref(pdwSegmentInfo), ctypes.sizeof(pdwSegmentInfo) ) nsource = pdwSegmentInfo.dwSourceCount pszMsgBuffer = ctypes.create_string_buffer(" "*256) neuroshare.ns_GetLastErrorMsg(ctypes.byref(pszMsgBuffer), 256) for dwSourceID in range(pdwSegmentInfo.dwSourceCount) : pSourceInfo = ns_SEGSOURCEINFO() neuroshare.ns_GetSegmentSourceInfo( hFile, dwEntityID, dwSourceID, ctypes.byref(pSourceInfo), ctypes.sizeof(pSourceInfo) ) if lazy: sptr = SpikeTrain(times, name = str(entityInfo.szEntityLabel), t_stop = 0.*pq.s) sptr.lazy_shape = entityInfo.dwItemCount else: pdTimeStamp = ctypes.c_double(0.) dwDataBufferSize = pdwSegmentInfo.dwMaxSampleCount*pdwSegmentInfo.dwSourceCount pData = np.zeros( (dwDataBufferSize), dtype = 'float64') pdwSampleCount = ctypes.c_uint32(0) pdwUnitID= ctypes.c_uint32(0) nsample = int(dwDataBufferSize) times = np.empty( (entityInfo.dwItemCount), dtype = 'f') waveforms = np.empty( (entityInfo.dwItemCount, nsource, nsample), dtype = 'f') for dwIndex in range(entityInfo.dwItemCount ): neuroshare.ns_GetSegmentData ( hFile, dwEntityID, dwIndex, ctypes.byref(pdTimeStamp), pData.ctypes.data_as(ctypes.POINTER(ctypes.c_double)), dwDataBufferSize * 8, ctypes.byref(pdwSampleCount), ctypes.byref(pdwUnitID ) ) times[dwIndex] = pdTimeStamp.value waveforms[dwIndex, :,:] = pData[:nsample*nsource].reshape(nsample ,nsource).transpose() sptr = SpikeTrain(times = pq.Quantity(times, units = 's', copy = False), t_stop = times.max(), waveforms = pq.Quantity(waveforms, units = str(pdwSegmentInfo.szUnits), copy = False ), left_sweep = nsample/2./float(pdwSegmentInfo.dSampleRate)*pq.s, sampling_rate = float(pdwSegmentInfo.dSampleRate)*pq.Hz, name = str(entityInfo.szEntityLabel), ) seg.spiketrains.append(sptr) # neuralevent if entity_types[entityInfo.dwEntityType] == 'ns_ENTITY_NEURALEVENT': pNeuralInfo = ns_NEURALINFO() neuroshare.ns_GetNeuralInfo ( hFile, dwEntityID, ctypes.byref(pNeuralInfo), ctypes.sizeof(pNeuralInfo)) if lazy: times = [ ]*pq.s t_stop = 0*pq.s else: pData = np.zeros( (entityInfo.dwItemCount,), dtype = 'float64') dwStartIndex = 0 dwIndexCount = entityInfo.dwItemCount neuroshare.ns_GetNeuralData( hFile, dwEntityID, dwStartIndex, dwIndexCount, pData.ctypes.data_as(ctypes.POINTER(ctypes.c_double))) times = pData*pq.s t_stop = times.max() sptr = SpikeTrain(times, t_stop =t_stop, name = str(entityInfo.szEntityLabel),) if lazy: sptr.lazy_shape = entityInfo.dwItemCount seg.spiketrains.append(sptr) # close neuroshare.ns_CloseFile(hFile) seg.create_many_to_one_relationship() return seg
def read_segment(self, import_neuroshare_segment=True, lazy=False, cascade=True): """ Arguments: import_neuroshare_segment: import neuroshare segment as SpikeTrain with associated waveforms or not imported at all. """ seg = Segment(file_origin=os.path.basename(self.filename), ) if sys.platform.startswith('win'): neuroshare = ctypes.windll.LoadLibrary(self.dllname) elif sys.platform.startswith('linux'): neuroshare = ctypes.cdll.LoadLibrary(self.dllname) neuroshare = DllWithError(neuroshare) #elif sys.platform.startswith('darwin'): # API version info = ns_LIBRARYINFO() neuroshare.ns_GetLibraryInfo(ctypes.byref(info), ctypes.sizeof(info)) seg.annotate(neuroshare_version=str(info.dwAPIVersionMaj) + '.' + str(info.dwAPIVersionMin)) if not cascade: return seg # open file hFile = ctypes.c_uint32(0) neuroshare.ns_OpenFile(ctypes.c_char_p(self.filename), ctypes.byref(hFile)) fileinfo = ns_FILEINFO() neuroshare.ns_GetFileInfo(hFile, ctypes.byref(fileinfo), ctypes.sizeof(fileinfo)) # read all entities for dwEntityID in range(fileinfo.dwEntityCount): entityInfo = ns_ENTITYINFO() neuroshare.ns_GetEntityInfo(hFile, dwEntityID, ctypes.byref(entityInfo), ctypes.sizeof(entityInfo)) # EVENT if entity_types[entityInfo.dwEntityType] == 'ns_ENTITY_EVENT': pEventInfo = ns_EVENTINFO() neuroshare.ns_GetEventInfo(hFile, dwEntityID, ctypes.byref(pEventInfo), ctypes.sizeof(pEventInfo)) if pEventInfo.dwEventType == 0: #TEXT pData = ctypes.create_string_buffer( pEventInfo.dwMaxDataLength) elif pEventInfo.dwEventType == 1: #CVS pData = ctypes.create_string_buffer( pEventInfo.dwMaxDataLength) elif pEventInfo.dwEventType == 2: # 8bit pData = ctypes.c_byte(0) elif pEventInfo.dwEventType == 3: # 16bit pData = ctypes.c_int16(0) elif pEventInfo.dwEventType == 4: # 32bit pData = ctypes.c_int32(0) pdTimeStamp = ctypes.c_double(0.) pdwDataRetSize = ctypes.c_uint32(0) ea = Event(name=str(entityInfo.szEntityLabel), ) if not lazy: times = [] labels = [] for dwIndex in range(entityInfo.dwItemCount): neuroshare.ns_GetEventData( hFile, dwEntityID, dwIndex, ctypes.byref(pdTimeStamp), ctypes.byref(pData), ctypes.sizeof(pData), ctypes.byref(pdwDataRetSize)) times.append(pdTimeStamp.value) labels.append(str(pData.value)) ea.times = times * pq.s ea.labels = np.array(labels, dtype='S') else: ea.lazy_shape = entityInfo.dwItemCount seg.eventarrays.append(ea) # analog if entity_types[entityInfo.dwEntityType] == 'ns_ENTITY_ANALOG': pAnalogInfo = ns_ANALOGINFO() neuroshare.ns_GetAnalogInfo(hFile, dwEntityID, ctypes.byref(pAnalogInfo), ctypes.sizeof(pAnalogInfo)) dwIndexCount = entityInfo.dwItemCount if lazy: signal = [] * pq.Quantity(1, pAnalogInfo.szUnits) else: pdwContCount = ctypes.c_uint32(0) pData = np.zeros((entityInfo.dwItemCount, ), dtype='float64') total_read = 0 while total_read < entityInfo.dwItemCount: dwStartIndex = ctypes.c_uint32(total_read) dwStopIndex = ctypes.c_uint32(entityInfo.dwItemCount - total_read) neuroshare.ns_GetAnalogData( hFile, dwEntityID, dwStartIndex, dwStopIndex, ctypes.byref(pdwContCount), pData[total_read:].ctypes.data_as( ctypes.POINTER(ctypes.c_double))) total_read += pdwContCount.value signal = pq.Quantity(pData, units=pAnalogInfo.szUnits, copy=False) #t_start dwIndex = 0 pdTime = ctypes.c_double(0) neuroshare.ns_GetTimeByIndex(hFile, dwEntityID, dwIndex, ctypes.byref(pdTime)) anaSig = AnalogSignal( signal, sampling_rate=pAnalogInfo.dSampleRate * pq.Hz, t_start=pdTime.value * pq.s, name=str(entityInfo.szEntityLabel), ) anaSig.annotate(probe_info=str(pAnalogInfo.szProbeInfo)) if lazy: anaSig.lazy_shape = entityInfo.dwItemCount seg.analogsignals.append(anaSig) #segment if entity_types[ entityInfo. dwEntityType] == 'ns_ENTITY_SEGMENT' and import_neuroshare_segment: pdwSegmentInfo = ns_SEGMENTINFO() if not str(entityInfo.szEntityLabel).startswith('spks'): continue neuroshare.ns_GetSegmentInfo(hFile, dwEntityID, ctypes.byref(pdwSegmentInfo), ctypes.sizeof(pdwSegmentInfo)) nsource = pdwSegmentInfo.dwSourceCount pszMsgBuffer = ctypes.create_string_buffer(" " * 256) neuroshare.ns_GetLastErrorMsg(ctypes.byref(pszMsgBuffer), 256) for dwSourceID in range(pdwSegmentInfo.dwSourceCount): pSourceInfo = ns_SEGSOURCEINFO() neuroshare.ns_GetSegmentSourceInfo( hFile, dwEntityID, dwSourceID, ctypes.byref(pSourceInfo), ctypes.sizeof(pSourceInfo)) if lazy: sptr = SpikeTrain(times, name=str(entityInfo.szEntityLabel), t_stop=0. * pq.s) sptr.lazy_shape = entityInfo.dwItemCount else: pdTimeStamp = ctypes.c_double(0.) dwDataBufferSize = pdwSegmentInfo.dwMaxSampleCount * pdwSegmentInfo.dwSourceCount pData = np.zeros((dwDataBufferSize), dtype='float64') pdwSampleCount = ctypes.c_uint32(0) pdwUnitID = ctypes.c_uint32(0) nsample = int(dwDataBufferSize) times = np.empty((entityInfo.dwItemCount), dtype='f') waveforms = np.empty( (entityInfo.dwItemCount, nsource, nsample), dtype='f') for dwIndex in range(entityInfo.dwItemCount): neuroshare.ns_GetSegmentData( hFile, dwEntityID, dwIndex, ctypes.byref(pdTimeStamp), pData.ctypes.data_as( ctypes.POINTER(ctypes.c_double)), dwDataBufferSize * 8, ctypes.byref(pdwSampleCount), ctypes.byref(pdwUnitID)) times[dwIndex] = pdTimeStamp.value waveforms[ dwIndex, :, :] = pData[:nsample * nsource].reshape( nsample, nsource).transpose() sptr = SpikeTrain( times=pq.Quantity(times, units='s', copy=False), t_stop=times.max(), waveforms=pq.Quantity(waveforms, units=str( pdwSegmentInfo.szUnits), copy=False), left_sweep=nsample / 2. / float(pdwSegmentInfo.dSampleRate) * pq.s, sampling_rate=float(pdwSegmentInfo.dSampleRate) * pq.Hz, name=str(entityInfo.szEntityLabel), ) seg.spiketrains.append(sptr) # neuralevent if entity_types[ entityInfo.dwEntityType] == 'ns_ENTITY_NEURALEVENT': pNeuralInfo = ns_NEURALINFO() neuroshare.ns_GetNeuralInfo(hFile, dwEntityID, ctypes.byref(pNeuralInfo), ctypes.sizeof(pNeuralInfo)) if lazy: times = [] * pq.s t_stop = 0 * pq.s else: pData = np.zeros((entityInfo.dwItemCount, ), dtype='float64') dwStartIndex = 0 dwIndexCount = entityInfo.dwItemCount neuroshare.ns_GetNeuralData( hFile, dwEntityID, dwStartIndex, dwIndexCount, pData.ctypes.data_as(ctypes.POINTER(ctypes.c_double))) times = pData * pq.s t_stop = times.max() sptr = SpikeTrain( times, t_stop=t_stop, name=str(entityInfo.szEntityLabel), ) if lazy: sptr.lazy_shape = entityInfo.dwItemCount seg.spiketrains.append(sptr) # close neuroshare.ns_CloseFile(hFile) seg.create_many_to_one_relationship() return seg