コード例 #1
0
def test_adagrad(backend_default):
    ada = Adagrad()
    param = np.random.rand(200, 128)
    param2 = copy.deepcopy(param)
    grad = 0.01 * np.random.rand(200, 128)
    grad2 = grad / 128.
    states = [0.01 * np.random.rand(200, 128)]
    states2 = [copy.deepcopy(states[0])]
    states2[0][:] = states2[0] + np.square(grad2)
    denom = np.sqrt(states2[0] + ada.epsilon)
    param2[:] -= grad2 * float(ada.learning_rate) / denom
    param_list = [((wrap(param), wrap(grad)), [wrap(states[0])])]
    compare_tensors(ada, param_list, param2, tol=1e-7)
コード例 #2
0
ファイル: model.py プロジェクト: unyqhz/sp-2016
        Dropout(0.8),
        Conv((3, 3, 128), init=gauss, strides=small, **common),
        Pooling(2, strides=2),
        Dropout(0.4),
        Conv((3, 3, 256), init=gauss, strides=small, **common),
        Dropout(0.2),
        Conv((2, 2, 512), init=gauss, strides=tiny, **common),
        Conv((2, 2, 128), init=gauss, strides=tiny, **common),
        DeepBiRNN(64, init=glorot, reset_cells=True, depth=5, **common),
        RecurrentMean(),
        Affine(nout=2, init=gauss, activation=Softmax())
    ]
}[subj]

model = Model(layers=layers)
opt = Adagrad(learning_rate=rate)
callbacks = Callbacks(model, eval_set=test, **args.callback_args)
if args.validate_mode:
    evaluator = Evaluator(subj, data_dir, test)
    callbacks.add_callback(evaluator)
    preds_name = 'eval.'
else:
    preds_name = 'test.'
cost = GeneralizedCost(costfunc=CrossEntropyBinary())

model.fit(tain,
          optimizer=opt,
          num_epochs=nepochs,
          cost=cost,
          callbacks=callbacks)
preds = model.get_outputs(test)[:, 1]
コード例 #3
0
                       depth=1,
                       reset_cells=True,
                       batch_norm=True)

layers = [
    LookupTable(vocab_size=vocab_size, embedding_dim=embedding_dim, init=uni),
    rlayer,
    RecurrentSum(),
    Dropout(keep=0.5),
    Affine(2, g_uni, bias=g_uni, activation=Softmax())
]

model = Model(layers=layers)

cost = GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True))
optimizer = Adagrad(learning_rate=0.01,
                    gradient_clip_value=gradient_clip_value)

# configure callbacks
callbacks = Callbacks(model, eval_set=valid_set, **args.callback_args)

# train model
model.fit(train_set,
          optimizer=optimizer,
          num_epochs=args.epochs,
          cost=cost,
          callbacks=callbacks)

# eval model
print "Train Accuracy - ", 100 * model.eval(train_set, metric=Accuracy())
print "Test  Accuracy - ", 100 * model.eval(valid_set, metric=Accuracy())
コード例 #4
0
common_params = dict(sampling_freq=22050, clip_duration=16000, frame_duration=16)
train_params = AudioParams(**common_params)
valid_params = AudioParams(**common_params)
common = dict(target_size=1, nclasses=10, repo_dir=args.data_dir)
train = DataLoader(set_name='music-train', media_params=train_params,
                   index_file=train_idx, shuffle=True, **common)
valid = DataLoader(set_name='music-valid', media_params=valid_params,
                   index_file=valid_idx, shuffle=False, **common)
init = Gaussian(scale=0.01)
layers = [Conv((2, 2, 4), init=init, activation=Rectlin(),
               strides=dict(str_h=2, str_w=4)),
          Pooling(2, strides=2),
          Conv((3, 3, 4), init=init, batch_norm=True, activation=Rectlin(),
               strides=dict(str_h=1, str_w=2)),
          DeepBiRNN(128, init=GlorotUniform(), batch_norm=True, activation=Rectlin(),
                    reset_cells=True, depth=3),
          RecurrentMean(),
          Affine(nout=common['nclasses'], init=init, activation=Softmax())]

model = Model(layers=layers)
opt = Adagrad(learning_rate=0.01, gradient_clip_value=15)
metric = Misclassification()
callbacks = Callbacks(model, eval_set=valid, metric=metric, **args.callback_args)
cost = GeneralizedCost(costfunc=CrossEntropyMulti())

model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
print('Misclassification error = %.1f%%' % (model.eval(valid, metric=metric)*100))
display(model, ['Convolution_0'], 'inputs')
display(model, ['Convolution_0', 'Convolution_1', 'Pooling_0'], 'outputs')
コード例 #5
0
ファイル: model.py プロジェクト: bigsnarfdude/cnn-rnn
tiny = dict(str_h=1, str_w=1)
small = dict(str_h=1, str_w=2)
big = dict(str_h=1, str_w=4)
common = dict(batch_norm=True, activation=Rectlin())
layers = [Conv((3, 5, 64), init=gauss, activation=Rectlin(), strides=big),
          Pooling(2, strides=2),
          Conv((3, 3, 128), init=gauss, strides=small, **common),
          Pooling(2, strides=2),
          Conv((3, 3, 256), init=gauss, strides=small, **common),
          Conv((2, 2, 512), init=gauss, strides=tiny, **common),
          DeepBiRNN(128, init=glorot, reset_cells=True, depth=3, **common),
          RecurrentMean(),
          Affine(nout=2, init=gauss, activation=Softmax())]

model = Model(layers=layers)
opt = Adagrad(learning_rate=0.0001)
callbacks = Callbacks(model, eval_set=test, **args.callback_args)
cost = GeneralizedCost(costfunc=CrossEntropyBinary())

model.fit(tain, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
preds = model.get_outputs(test)[:, 1]

if args.test_mode:
    preds_name = 'test.'
else:
    preds_name = 'eval.'
    labels = np.loadtxt(test_idx, delimiter=',', skiprows=1, usecols=[1])
    auc = metrics.roc_auc_score(labels, preds)
    print('Eval AUC for subject %d: %.4f' % (subj, auc))

preds_file = preds_name + str(subj) + '.' + str(args.electrode) + '.npy'
コード例 #6
0
layers = [
    LookupTable(vocab_size=vocab_size, embedding_dim=embedding_dim, init=init_emb),
    LSTM(hidden_size, init_glorot, activation=Tanh(),
         gate_activation=Logistic(), reset_cells=True),
    RecurrentSum(),
    Dropout(keep=0.5),
    Affine(2, init_glorot, bias=init_glorot, activation=Softmax())
]

cost = GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True))
metric = Accuracy()

model = Model(layers=layers)

optimizer = Adagrad(learning_rate=0.01, clip_gradients=clip_gradients)


# configure callbacks
callbacks = Callbacks(model, train_set, args, valid_set=valid_set)

# train model
model.fit(train_set,
          optimizer=optimizer,
          num_epochs=num_epochs,
          cost=cost,
          callbacks=callbacks)


# eval model
print "Test  Accuracy - ", 100 * model.eval(valid_set, metric=metric)
コード例 #7
0
# define layers
layers = [
    LookupTable(vocab_size=vocab_size, embedding_dim=embedding_dim, init=init_emb,
                pad_idx=0, update=embedding_update),
    LSTM(hidden_size, init_glorot, activation=Tanh(), gate_activation=Logistic(),
         reset_cells=True),
    RecurrentSum(),
    Dropout(keep=0.5),
    Affine(nclass, init_glorot, bias=init_glorot, activation=Softmax())
]

# set the cost, metrics, optimizer
cost = GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True))
metric = Accuracy()
model = Model(layers=layers)
optimizer = Adagrad(learning_rate=0.01)

# configure callbacks
callbacks = Callbacks(model, eval_set=valid_set, **args.callback_args)

# train model
model.fit(train_set,
          optimizer=optimizer,
          num_epochs=num_epochs,
          cost=cost,
          callbacks=callbacks)

# eval model
print "\nTrain Accuracy -", 100 * model.eval(train_set, metric=metric)
print "Test Accuracy -", 100 * model.eval(valid_set, metric=metric)