コード例 #1
0
 def layers(self):
     bn = True
     return [
         Conv((7, 7, 96), init=Kaiming(), activation=Explin(), batch_norm=bn, padding=3, strides=1)\
             if self.bn_first_layer else\
             Conv((7, 7, 96), init=Kaiming(), bias=Constant(0), activation=Explin(), padding=3, strides=1),
         Pooling(3, strides=2, padding=1),
         Conv((7, 7, 128), init=Kaiming(), activation=Explin(), batch_norm=bn, padding=3, strides=1),
         Pooling(3, strides=2, padding=1),
         Conv((5, 5, 256), init=Kaiming(), activation=Explin(), batch_norm=bn, padding=2, strides=1),
         Pooling(3, strides=2, padding=1),
         Conv((3, 3, 384), init=Kaiming(), activation=Explin(), batch_norm=bn, padding=1, strides=1),
         Conv((3, 3, 384), init=Kaiming(), activation=Explin(), batch_norm=bn, padding=1, strides=1),
         Conv((3, 3, 384), init=Kaiming(), activation=Explin(), batch_norm=bn, padding=1, strides=1),
         Pooling(3, strides=2, padding=1, op='avg'),
         Affine(nout=self.noutputs, init=Kaiming(), activation=Explin(), batch_norm=bn),
         Affine(nout=self.noutputs, init=Kaiming(), activation=Explin(), batch_norm=bn),
         Affine(nout=self.noutputs, init=Kaiming(), bias=Constant(0),
                activation=Softmax() if self.use_softmax else Logistic(shortcut=True))
     ]
コード例 #2
0
 def layers(self):
     bn = True
     return [
         # input 128
         Conv((7, 7, 96),
              init=Kaiming(),
              bias=Constant(0),
              activation=Explin(),
              padding=3,
              strides=1),
         Pooling(3, strides=2, padding=1),
         # 64
         Conv((7, 7, 128),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=3,
              strides=1),
         Pooling(3, strides=2, padding=1),
         # 32
         Conv((5, 5, 256),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=2,
              strides=1),
         Pooling(3, strides=2, padding=1),
         # 16
         Conv((3, 3, 384),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Conv((3, 3, 384),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Conv((3, 3, 384),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Pooling(3, strides=2, padding=1),
         # 8
         Conv((3, 3, 8192),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Pooling('all', op='avg'),
         Affine(nout=self.noutputs,
                init=Kaiming(),
                bias=Constant(0),
                activation=Softmax() if self.use_softmax else Logistic(
                    shortcut=True))
     ]
コード例 #3
0
 def layers(self):
     bn = True
     return [
         # input 128
         Conv((7, 7, 64),
              init=Kaiming(),
              bias=Constant(0),
              activation=Explin(),
              padding=3,
              strides=1),
         Pooling(3, strides=2, padding=1),
         # 64
         Conv((3, 3, 96),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Conv((3, 3, 96),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Pooling(3, strides=2, padding=1),
         # 32
         Conv((3, 3, 192),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Conv((3, 3, 192),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Pooling(3, strides=2, padding=1),
         # 16
         Conv((3, 3, 384),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Conv((3, 3, 384),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Conv((3, 3, 384),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         # this 4th deep layer may have been in for vgg3pool64all run? can not fit for 6fold so commented
         #Conv((3, 3, 384), init=Kaiming(), activation=Explin(), batch_norm=bn, padding=1, strides=1),
         Pooling(3, strides=2, padding=1),
         # 8
         Conv((3, 3, 6144),
              init=Kaiming(),
              activation=Explin(),
              batch_norm=bn,
              padding=1,
              strides=1),
         Pooling('all', op='avg'),
         Affine(nout=self.noutputs,
                init=Kaiming(),
                bias=Constant(0),
                activation=Softmax() if self.use_softmax else Logistic(
                    shortcut=True))
     ]