def train(model, epochs=EPOCHS, dataset=VesicleDataset): """Train the model.""" # Training dataset. dataset_train = dataset() dataset_train.load_vesicle(args.dataset, "train") dataset_train.prepare() # Validation dataset dataset_val = dataset() dataset_val.load_vesicle(args.dataset, "val") dataset_val.prepare() augmentation = iaa.SomeOf((0, None), [ iaa.Fliplr(0.5), iaa.Flipud(0.5), iaa.Affine(rotate=(-180, 180)), iaa.Affine(scale=(0.9, 1.11)), ]) inference_model = modellib.MaskRCNN(mode="inference", config=config, model_dir=args.logs) params = args.__dict__ params.update(config.get_dict()) callbacks = [ keras.callbacks.TensorBoard(log_dir=model.log_dir, histogram_freq=0, write_graph=True, write_images=False), keras.callbacks.ModelCheckpoint(model.checkpoint_path, verbose=0, save_weights_only=True), ] neptune_callback = NeptuneCallback(args.neptune_project, params, model, inference_model, dataset_val) if args.neptune: callbacks += [neptune_callback, NeptuneMonitor()] if args.tensorboard: callbacks.append( TensorBoardCallback(model.log_dir, model, inference_model, dataset_val)) print(f"Training {args.layers} network layers") try: model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=epochs, augmentation=augmentation, custom_callbacks=callbacks, layers=args.layers, override_callbacks=True) except KeyboardInterrupt: if args.neptune: neptune_callback.save_best_model()
def train(self, epochs=5): X_np = self.X.values Y_np = np_utils.to_categorical(self.Y, num_classes=6) Y_np_sums = Y_np.sum(axis=0) print(Y_np_sums) self.model.fit(x=X_np, y=Y_np, epochs=epochs, callbacks=[NeptuneMonitor()], validation_split=0.1) print('Training done') yp = self.model.predict(x=X_np) print(yp[0])
**train_settings } }), **neptune_kwargs) #Setup Checkpoint to save best model iteration checkpoint = ModelCheckpoint("Model Checkpoint Name", monitor='val_loss', verbose=1, save_best_only=True, mode='auto', period=1) #Start FineTuning The Model early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='auto') hist = model.fit( x=imageLoader_modified(batch_size), steps_per_epoch=hdf5_file.root.exttest_img.shape[0] * 0.4 // batch_size, epochs=50, validation_data=imageLoader(hdf5_file.root.val_img, hdf5_file.root.val_labels, batch_size, 1), validation_steps=hdf5_file.root.val_img.shape[0] // batch_size, callbacks=[early_stopping, csv_logger, NeptuneMonitor(exp), checkpoint]) model.save('Final Model Name')
#model.compile(optimizer=optimizer, loss=cust_loss(custLossThresh), metrics = ['accuracy',mae,dice_coef], run_eagerly=True) model.compile(optimizer=optimizer, loss=cust_loss(custLossThresh), metrics = ['mae',cust_accuracy(custLossThresh),cust_mae(custLossThresh),dice_coef], run_eagerly=True) # # set up callback functions # tensorboard = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1) checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join(output_path, checkpoint_filename), monitor='loss', verbose=1, save_best_only=True, mode='min') # # Adam optimizer adaptively computes updates to the learning rate # so scheduler is taken out for this optimizer # LRS = tf.keras.callbacks.LearningRateScheduler(scheduler) # # run the model # neptune_tb.integrate_with_tensorflow() model.fit(train_dataset, epochs=epochs, validation_data=val_dataset, callbacks=[tensorboard, checkpoint, NeptuneMonitor()]) # # Send signal to neptune that the run is done # neptune.stop() # # save the model from the last epoch # t = time.strftime("%Y_%m_%d_%H_%M", time.localtime()) model.save(output_model.format(t))
verbose=1, save_best_only=True, mode='min') # # Adam optimizer adaptively computes updates to the learning rate # so scheduler is taken out for this optimizer # LRS = tf.keras.callbacks.LearningRateScheduler(scheduler) # # run the model # neptune_tb.integrate_with_tensorflow() model.fit(train_dataset, epochs=epochs, validation_data=val_dataset, callbacks=[tensorboard, checkpoint, NeptuneMonitor()]) # # Send signal to neptune that the run is done # neptune.stop() # # save the model from the last epoch # t = time.strftime("%Y_%m_%d_%H_%M", time.localtime()) model.save(output_model.format(t))
neptune.init(api_token='ANONYMOUS', project_qualified_name='shared/tensorflow-keras-integration') # Quickstart ## Step 1: Create an Experiment neptune.create_experiment('tensorflow-keras-quickstart') ## Step 2: Add NeptuneMonitor Callback to model.fit() from neptunecontrib.monitoring.keras import NeptuneMonitor model.fit(x_train, y_train, epochs=5, batch_size=64, callbacks=[NeptuneMonitor()]) ## Step 3: Explore results in the Neptune UI ## Step 4: Stop logging neptune.stop() # More Options ## Log hardware consumption ## Log hyperparameters PARAMS = {'lr':0.005, 'momentum':0.9,