コード例 #1
0
ファイル: topology_2d_helper.py プロジェクト: A13k2/Magic
 def start_simulation(self):
     nest.Simulate(self.parameters['Time before stimulation'])
     nest.SetStatus(self.stim2_i, {'rate': self.parameters['Stimulus rate']})
     nest.Simulate(self.parameters['Time of stimulation'])
     nest.SetStatus(self.stim2_i, {'rate': 0.0})
     nest.Simulate(self.parameters['Time after Stimulation'])
     rec_ex_true = nest.GetLeaves(self.rec_ex, local_only=True)[0]
     rec_in_true = nest.GetLeaves(self.rec_in, local_only=True)[0]
     self.events_ex = nest.GetStatus(rec_ex_true, "events")[0]
     self.events_in = nest.GetStatus(rec_in_true, "events")[0]
     # self.events_ex = nest.GetStatus(self.rec_ex, "events")[0]
     # self.events_in = nest.GetStatus(self.rec_in, "events")[0]
     self.df_ex = makePandas(self.events_ex, tp.FindCenterElement(self.l)[0])
     self.df_in = makePandas(self.events_in, tp.FindCenterElement(self.l)[0])
コード例 #2
0
    def test_GetCenterElement(self):
        """Interface and result check for finding center element.
            This function is Py only, so we also need to check results."""
        # nodes at [-1,0,1]x[-1,0,1], column-wise
        ldict = {'elements': 'iaf_psc_alpha', 'rows': 3, 'columns': 3,
                 'extent': (2., 2.)}
        nest.ResetKernel()
        l = topo.CreateLayer(ldict)

        # single layer
        n = topo.FindCenterElement(l)
        self.assertEqual(n, (6,))

        # two layers
        n = topo.FindCenterElement(l * 2)
        self.assertEqual(n, (6,) * 2)
コード例 #3
0
    def _build(self):
        '''Create populations.'''

        ldict_s = {
            'elements': 'iaf_neuron',
            'positions': [[0.] * self._dimensions],
            'extent': [self._L] * self._dimensions,
            'edge_wrap': True
        }
        x = rnd.uniform(-self._L / 2., self._L / 2., self._N)
        y = rnd.uniform(-self._L / 2., self._L / 2., self._N)
        if self._dimensions == 3:
            z = rnd.uniform(-self._L / 2., self._L / 2., self._N)
            pos = zip(x, y, z)
        else:
            pos = zip(x, y)
        ldict_t = {
            'elements': 'iaf_neuron',
            'positions': pos,
            'extent': [self._L] * self._dimensions,
            'edge_wrap': True
        }
        self._ls = topo.CreateLayer(ldict_s)
        self._lt = topo.CreateLayer(ldict_t)
        self._driver = topo.FindCenterElement(self._ls)
コード例 #4
0
    def test_PlotTargets(self):
        """Test plotting targets."""
        ldict = {'elements': ['iaf_neuron', 'iaf_psc_alpha'], 'rows': 3,
                 'columns': 3,
                 'extent': [2., 2.], 'edge_wrap': True}
        cdict = {'connection_type': 'divergent',
                 'mask': {'grid': {'rows': 2, 'columns': 2}}}
        nest.ResetKernel()
        l = topo.CreateLayer(ldict)
        ian = [gid for gid in nest.GetLeaves(l)[0]
               if nest.GetStatus([gid], 'model')[0] == 'iaf_neuron']
        ipa = [gid for gid in nest.GetLeaves(l)[0]
               if nest.GetStatus([gid], 'model')[0] == 'iaf_psc_alpha']

        # connect ian -> all using static_synapse
        cdict.update({'sources': {'model': 'iaf_neuron'},
                      'synapse_model': 'static_synapse'})
        topo.ConnectLayers(l, l, cdict)
        for k in ['sources', 'synapse_model']:
            cdict.pop(k)

        # connect ipa -> ipa using stdp_synapse
        cdict.update({'sources': {'model': 'iaf_psc_alpha'},
                      'targets': {'model': 'iaf_psc_alpha'},
                      'synapse_model': 'stdp_synapse'})
        topo.ConnectLayers(l, l, cdict)
        for k in ['sources', 'targets', 'synapse_model']:
            cdict.pop(k)

        ctr = topo.FindCenterElement(l)
        fig = topo.PlotTargets(ctr, l)
        fig.gca().set_title('Plain call')

        self.assertTrue(True)
コード例 #5
0
ファイル: topology_2d_helper.py プロジェクト: A13k2/Magic
def distancePlotsLazy(Start, End, Step, network, folder):
    for events, title, neurons_folder in zip([network.events_ex, network.events_in], ["Excitatory", "Inhibitory"], ['/excitatory_neurons', '/inhibitory_neurons']):
        for start, end in zip(np.arange(Start, End, Step), np.arange(Start + Step, End + Step, Step)):
            plt.close()
            currentTitle = title + 'Neurons from ' + str(start) + ' to ' + str(end)
            print(currentTitle)
            times, neurons = magic.distance(events, start, end, tp.FindCenterElement(network.l)[0])
            magic.raster_plot(senders=times, timeS=neurons, title=currentTitle, gridSize=network.gridSize)
            plt.savefig(folder + neurons_folder + '/dist_' + str(end) + '_raster_' + title + '.png',
                dpi=300)
コード例 #6
0
def plot_layer_targets(cds, savename):
    layer = topo.CreateLayer(layer_dict)
    for cd in cds:
        topo.ConnectLayers(layer, layer, cd)

    ctr = topo.FindCenterElement(layer)
    fig = topo.PlotLayer(layer, nodesize=20)
    topo.PlotTargets(ctr, layer, fig=fig, tgt_color="red")

    plt.savefig("%s.png" % savename)
    plt.close()
コード例 #7
0
def plot_layer_targets(cds, savename):
    nest.ResetKernel()
    layer = topp.CreateLayer({"rows":rowcol, "columns":rowcol, 
                              "extent":extent, "elements":model})
    for cd in cds:
        topp.ConnectLayers(layer, layer, cd)
    
    ctr = topp.FindCenterElement(layer)
    fig = topp.PlotLayer(layer, nodesize=20)
    topp.PlotTargets(ctr,layer, fig=fig, tgt_color="red")
    
    pylab.savefig("%s.png"%savename)
    pylab.close()
コード例 #8
0
ファイル: topology_2d_helper.py プロジェクト: A13k2/Magic
 def plotKernel(self, folder):
     fig, ax = plt.subplots()
     tp.PlotLayer(self.l, fig, nodesize=10)
     ctr_elem = tp.FindCenterElement(self.l)
     # import ipdb; ipdb.set_trace()
     # tp.PlotKernel(ax, ctr_elem, mask=self.cdict_i2i['mask'], kern=self.cdict_i2i['kernel'])
     tp.PlotTargets(ctr_elem, self.l, fig=fig, tgt_color='red',
             mask=self.cdict_e2e['mask'], kernel=self.cdict_e2e['kernel'],
             kernel_color='green', mask_color='green',
             syn_type='exc_recurrent')
     # tp.PlotKernel(ax, ctr_elem, mask=self.cdict_e2e['mask'], mask_color='green')
     plt.xlabel(r'X')
     plt.ylabel(r'Y')
     plt.xlim(-.5, .5)
     plt.ylim(-.5, .5)
     plt.savefig(folder+'/kernel.pdf')
コード例 #9
0
def plot_layer_targets(cds, savename):
    nest.ResetKernel()
    layer = topp.CreateLayer({
        'rows': rowcol,
        'columns': rowcol,
        'extent': extent,
        'elements': model
    })
    for cd in cds:
        topp.ConnectLayers(layer, layer, cd)

    ctr = topp.FindCenterElement(layer)
    fig = topp.PlotLayer(layer, nodesize=20)
    topp.PlotTargets(ctr, layer, fig=fig, tgt_color='red')

    pylab.savefig('%s.png' % savename)
    pylab.close()
コード例 #10
0
def get_Relative_Weight(params, radius):

    # Create a fictional network and count the number of target connections
    layerProps = {
        'rows': params['N'],
        'columns': params['N'],
        'extent': [params['visSize'], params['visSize']],
        'edge_wrap': True,
        'elements': 'iaf_cond_exp'
    }

    l = tp.CreateLayer(layerProps)

    dict = {
        "connection_type": "convergent",
        "mask": {
            "circular": {
                "radius": radius
            }
        },
        "kernel": 1.0,
        "weights": {
            "gaussian": {
                "p_center": 1.0,
                "sigma": radius / 3.0
            }
        }
    }

    tp.ConnectLayers(l, l, dict)
    ctr = tp.FindCenterElement(l)
    targets = tp.GetTargetNodes(ctr, l)

    #    print ("Number of targets = ",len(targets[0]))

    conn = nest.GetConnections(ctr, targets[0])
    st = nest.GetStatus(conn)

    w = 0.0
    for n in np.arange(len(st)):
        w += st[n]['weight']

#    print ("Total weight = ",w)

    return w, len(targets[0])
コード例 #11
0
def plot_connections(layer_dict, conn_dict, file_name):
    conn_dict['synapse_model'] = 'static_synapse'
    layer = tp.CreateLayer(layer_dict)

    tp.ConnectLayers(layer, layer, conn_dict)

    fig = tp.PlotLayer(layer)
    tp.PlotTargets(tp.FindCenterElement(layer),
                   layer,
                   fig=fig,
                   tgt_color='red')
    pylab.savefig(file_name)
    #pylab.show()

    tp.DumpLayerConnections(layer, conn_dict['synapse_model'],
                            file_name + ".dump")

    positions = tp.GetTargetPositions(layer, layer)
コード例 #12
0
 def _build(self):
     '''Create populations.'''
     if self._open_bc:
         ldict_s = {
             'elements': 'iaf_psc_alpha',
             'positions': [[self._x_d, self._y_d]],
             'extent': [self._L] * self._dimensions,
             'edge_wrap': False
         }
         x = rnd.uniform(-self._L / 2., self._L / 2., self._N)
         y = rnd.uniform(-self._L / 2., self._L / 2., self._N)
         pos = list(zip(x, y))
         ldict_t = {
             'elements': 'iaf_psc_alpha',
             'positions': pos,
             'extent': [self._L] * self._dimensions,
             'edge_wrap': False
         }
         self._ls = topo.CreateLayer(ldict_s)
         self._lt = topo.CreateLayer(ldict_t)
         self._driver = nest.GetLeaves(self._ls)[0]
     else:
         ldict_s = {
             'elements': 'iaf_psc_alpha',
             'positions': [[0.] * self._dimensions],
             'extent': [self._L] * self._dimensions,
             'edge_wrap': True
         }
         x = rnd.uniform(-self._L / 2., self._L / 2., self._N)
         y = rnd.uniform(-self._L / 2., self._L / 2., self._N)
         if self._dimensions == 3:
             z = rnd.uniform(-self._L / 2., self._L / 2., self._N)
             pos = list(zip(x, y, z))
         else:
             pos = list(zip(x, y))
         ldict_t = {
             'elements': 'iaf_psc_alpha',
             'positions': pos,
             'extent': [self._L] * self._dimensions,
             'edge_wrap': True
         }
         self._ls = topo.CreateLayer(ldict_s)
         self._lt = topo.CreateLayer(ldict_t)
         self._driver = topo.FindCenterElement(self._ls)
コード例 #13
0
def conn_figure(fig,
                layer,
                connd,
                targets=None,
                showmask=True,
                showkern=False,
                xticks=range(-5, 6),
                yticks=range(-5, 6),
                xlim=[-5.5, 5.5],
                ylim=[-5.5, 5.5]):
    if targets is None:
        targets = ((tp.FindCenterElement(layer), 'red'), )

    tp.PlotLayer(layer, fig=fig, nodesize=60)
    for src, clr in targets:
        if showmask:
            mask = connd['mask']
        else:
            mask = None
        if showkern:
            kern = connd['kernel']
        else:
            kern = None
        tp.PlotTargets(src,
                       layer,
                       fig=fig,
                       mask=mask,
                       kernel=kern,
                       src_size=250,
                       tgt_color=clr,
                       tgt_size=20,
                       kernel_color='green')

    beautify_layer(layer,
                   fig,
                   xlim=xlim,
                   ylim=ylim,
                   xticks=xticks,
                   yticks=yticks,
                   xlabel='',
                   ylabel='')
    fig.gca().grid(False)
    def _build(self):
        '''Create populations.'''

        ldict_s = {
            'elements': 'iaf_neuron',
            'positions': [(0., 0.)],
            'extent': [self._L] * 2,
            'edge_wrap': True
        }
        x = rnd.uniform(-self._L / 2., self._L / 2., self._N)
        y = rnd.uniform(-self._L / 2., self._L / 2., self._N)
        ldict_t = {
            'elements': 'iaf_neuron',
            'positions': zip(x, y),
            'extent': [self._L] * 2,
            'edge_wrap': True
        }
        self._ls = topo.CreateLayer(ldict_s)
        self._lt = topo.CreateLayer(ldict_t)
        self._driver = topo.FindCenterElement(self._ls)
コード例 #15
0
    def test_PlotKernel(self):
        """Test plotting kernels."""
        ldict = {'elements': 'iaf_neuron', 'rows': 3, 'columns': 3,
                 'extent': [2., 2.], 'edge_wrap': True}
        nest.ResetKernel()
        l = topo.CreateLayer(ldict)
        f = plt.figure()
        a1 = f.add_subplot(221)
        ctr = topo.FindCenterElement(l)
        topo.PlotKernel(a1, ctr, {'circular': {'radius': 1.}},
                        {'gaussian': {'sigma': 0.2}})

        a2 = f.add_subplot(222)
        topo.PlotKernel(a2, ctr, {
            'doughnut': {'inner_radius': 0.5, 'outer_radius': 0.75}})

        a3 = f.add_subplot(223)
        topo.PlotKernel(a3, ctr, {'rectangular': {'lower_left': [-.5, -.5],
                                                  'upper_right': [0.5, 0.5]}})

        self.assertTrue(True)
コード例 #16
0
def csa_topology_example():

    # layers have 20x20 neurons and extent 1 x 1
    pop1 = topo.CreateLayer({'elements': 'iaf_neuron',
                             'rows': 20, 'columns': 20})
    pop2 = topo.CreateLayer({'elements': 'iaf_neuron',
                             'rows': 20, 'columns': 20})

    # create CSA-style geometry functions and metric
    g1 = geometryFunction(pop1)
    g2 = geometryFunction(pop2)
    d = csa.euclidMetric2d(g1, g2)

    # Gaussian connectivity profile, sigma = 0.2, cutoff at 0.5
    cs = csa.cset(csa.random * (csa.gaussian(0.2, 0.5) * d), 10000.0, 1.0)

    # create connections
    nest.CGConnect(pop1, pop2, cs, {"weight": 0, "delay": 1})

    # show targets of center neuron
    topo.PlotTargets(topo.FindCenterElement(pop1), pop2)
コード例 #17
0
def conn_figure_3d(fig,
                   layer,
                   connd,
                   targets=None,
                   showmask=True,
                   showkern=False,
                   xticks=range(-5, 6),
                   yticks=range(-5, 6),
                   xlim=[-5.5, 5.5],
                   ylim=[-5.5, 5.5]):
    if targets is None:
        targets = ((tp.FindCenterElement(layer), 'red'), )

    tp.PlotLayer(layer, fig=fig, nodesize=20, nodecolor=(.5, .5, 1.))
    for src, clr in targets:
        if showmask:
            mask = connd['mask']
        else:
            mask = None
        if showkern:
            kern = connd['kernel']
        else:
            kern = None
        tp.PlotTargets(src,
                       layer,
                       fig=fig,
                       mask=mask,
                       kernel=kern,
                       src_size=250,
                       tgt_color=clr,
                       tgt_size=60,
                       kernel_color='green')

    ax = fig.gca()
    ax.set_aspect('equal', 'box')
    plt.draw()
コード例 #18
0
}, {
        "targets": {
            "model": "TpInter"
        }
}]:
    retThal.update(conn)
    topo.ConnectLayers(retina, Tp, retThal)

#! Checks on connections
#! ---------------------

#! As a very simple check on the connections created, we inspect
#! the connections from the central node of various layers.

#! Connections from Retina to TpRelay
topo.PlotTargets(topo.FindCenterElement(retina), Tp, 'TpRelay', 'AMPA')
pylab.title('Connections Retina -> TpRelay')
pylab.show()

#! Connections from TpRelay to L4pyr in Vp (horizontally tuned)
topo.PlotTargets(topo.FindCenterElement(Tp), Vp_h, 'L4pyr', 'AMPA')
pylab.title('Connections TpRelay -> Vp(h) L4pyr')
pylab.show()

#! Connections from TpRelay to L4pyr in Vp (vertically tuned)
topo.PlotTargets(topo.FindCenterElement(Tp), Vp_v, 'L4pyr', 'AMPA')
pylab.title('Connections TpRelay -> Vp(v) L4pyr')
pylab.show()

#! Recording devices
#! =================
コード例 #19
0
# l1_children is a work-around until NEST 3.0 is released
l1_children = nest.hl_api.GetChildren(l1)[0]

# extract position information, transpose to list of x, y and z positions
xpos, ypos, zpos = zip(*topo.GetPosition(l1_children))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xpos, ypos, zpos, s=15, facecolor='b', edgecolor='none')

# Gaussian connections in full volume [-0.75,0.75]**3
topo.ConnectLayers(l1, l1,
                   {'connection_type': 'divergent', 'allow_autapses': False,
                    'mask': {'volume': {'lower_left': [-0.75, -0.75, -0.75],
                                        'upper_right': [0.75, 0.75, 0.75]}},
                    'kernel': {'gaussian': {'p_center': 1., 'sigma': 0.25}}})

# show connections from center element
# sender shown in red, targets in green
ctr = topo.FindCenterElement(l1)
xtgt, ytgt, ztgt = zip(*topo.GetTargetPositions(ctr, l1)[0])
xctr, yctr, zctr = topo.GetPosition(ctr)[0]
ax.scatter([xctr], [yctr], [zctr], s=40, facecolor='r', edgecolor='none')
ax.scatter(xtgt, ytgt, ztgt, s=40, facecolor='g', edgecolor='g')

tgts = topo.GetTargetNodes(ctr, l1)[0]
d = topo.Distance(ctr, tgts)

plt.figure()
plt.hist(d, 25)
# plt.show()
コード例 #20
0
    'mask': {
        'rectangular': {
            'lower_left': [-2., -1.],
            'upper_right': [2., 1.]
        }
    }
}
tp.ConnectLayers(l, l, conndict)
# { end #}

fig = plt.figure()
fig.add_subplot(121)
conn_figure(fig,
            l,
            conndict,
            targets=((tp.FindCenterElement(l), 'red'),
                     (tp.FindNearestElement(l, [4., 5.]), 'yellow')))

# same another time, with periodic bcs
lpbc = tp.CreateLayer({
    'rows': 11,
    'columns': 11,
    'extent': [11., 11.],
    'elements': 'iaf_neuron',
    'edge_wrap': True
})
tp.ConnectLayers(lpbc, lpbc, conndict)
fig.add_subplot(122)
conn_figure(fig,
            lpbc,
            conndict,
コード例 #21
0
# { vislayer #}
l = tp.CreateLayer({'rows': 21, 'columns': 21, 'elements': 'iaf_neuron'})
conndict = {
    'connection_type': 'divergent',
    'mask': {
        'circular': {
            'radius': 0.4
        }
    },
    'kernel': {
        'gaussian': {
            'p_center': 1.0,
            'sigma': 0.15
        }
    }
}
tp.ConnectLayers(l, l, conndict)
fig = tp.PlotLayer(l, nodesize=80)
ctr = tp.FindCenterElement(l)
tp.PlotTargets(ctr,
               l,
               fig=fig,
               mask=conndict['mask'],
               kernel=conndict['kernel'],
               src_size=250,
               tgt_color='red',
               tgt_size=20,
               kernel_color='green')
# { end #}
plt.savefig('../user_manual_figures/vislayer.png', bbox_inches='tight')
コード例 #22
0
g1 = geometryFunction(pop1)
g2 = geometryFunction(pop2)
d = csa.euclidMetric2d(g1, g2)
"""
The connection set ``cs`` describes a Gaussian connectivity profile
with sigma = 0.2 and cutoff at 0.5, and two values (10000.0 and 1.0)
used as weight and delay, respectively.
"""

cs = csa.cset(csa.random * (csa.gaussian(0.2, 0.5) * d), 10000.0, 1.0)
"""
We can now connect the populations using the `CGConnect` function.
It takes the IDs of pre- and postsynaptic neurons (``pop1`` and
``pop2``), the connection set (``cs``) and a dictionary that maps
the parameters weight and delay to positions in the value set
associated with the connection set.
"""

# This is a work-around until NEST 3.0 is released. It will issue a deprecation
# warning.
pop1_gids = nest.GetLeaves(pop1)[0]
pop2_gids = nest.GetLeaves(pop2)[0]

nest.CGConnect(pop1_gids, pop2_gids, cs, {"weight": 0, "delay": 1})
"""
Finally, we use the `PlotTargets` function to show all targets in
``pop2`` starting at the center neuron of ``pop1``.
"""

topo.PlotTargets(topo.FindCenterElement(pop1), pop2)
コード例 #23
0
     nest.Connect(Neuron_GIDs, sd_list[-1])
     multimeter_exc.append(
         nest.Create("multimeter",
                     params={
                         "interval":
                         0.1,
                         "record_from": ["V_m", "g_ex", "g_in"],
                         "withgid":
                         True,
                         "to_file":
                         True,
                         "label":
                         "mm_vLSPS_postsynaptic_cell_%s_%s" %
                         (vS1_Layer_Name[l], n_type)
                     }))
     print(ntop.FindCenterElement(SubSubRegion_Excitatory[-1]))
     nest.Connect(multimeter_exc[-1],
                  ntop.FindCenterElement(SubSubRegion_Excitatory[-1]))
 elif n_type_info['EorI'] == "I":
     pos = None
     pos = Neuron_pos[np.where(Neuron_pos[:, :, :, 3] == n_type_index)]
     nest.SetDefaults(
         elements, {
             "I_e": float(neuron_info['I_ex']),
             "V_th": float(neuron_info['spike_threshold']),
             "V_reset": float(neuron_info['reset_value']),
             "t_ref": float(neuron_info['absolute_refractory_period'])
         })
     newlayer = CreateSubSubRegion(topo_extend, topo_center, pos,
                                   neuronmodel)
     SubSubRegion_Inhibitory.append(newlayer)