n_features_to_test = [0.85, 0.9, 0.95] #SVM steps = [('scaler', MinMaxScaler()), ('red_dim', PCA()), ('clf', SVC(kernel='linear', probability=True, random_state=503))] pipeline = Pipeline(steps) #MMS parameteres_1 = [{'scaler':[MinMaxScaler()], 'red_dim':[PCA(random_state=42)], 'red_dim__n_components':list(n_features_to_test), 'clf__C':list(C_range), 'clf__class_weight':[None, 'balanced']}] for j in range(1,6): results, best_estimators_dict = nested_cv.function_nested_cv(public_data, public_labels, pipeline, parameteres_1, j*2) #create folder and save save_output.function_save_output(results, dim_reduction, name_1, j*2) #RBTS parameteres_2 = [{'scaler':[RobustScaler()], 'red_dim':[PCA(random_state=42)], 'red_dim__n_components':list(n_features_to_test), 'clf__C':list(C_range), 'clf__class_weight':[None, 'balanced']}] for j in range(1,6): results, best_estimators_dict = nested_cv.function_nested_cv(public_data, public_labels, pipeline, parameteres_2, j*2) #create folder and save
#SVM steps = [('scaler', MinMaxScaler()), ('red_dim', PCA()), ('clf', LinearSVC(loss='hinge', random_state=503))] pipeline = Pipeline(steps) #MMS parameteres_1 = [{ 'scaler': [MinMaxScaler()], 'red_dim': [PCA(random_state=42)], 'red_dim__n_components': list(n_features_to_test), 'clf__C': list(C_range), 'clf__class_weight': [None, 'balanced'] }] results_1 = nested_cv.function_nested_cv(public_data, public_labels, pipeline, parameteres_1) #create folder and save save_output.function_save_output(results_1, dim_reduction, name_1) #RBTS parameteres_2 = [{ 'scaler': [RobustScaler()], 'red_dim': [PCA(random_state=42)], 'red_dim__n_components': list(n_features_to_test), 'clf__C': list(C_range), 'clf__class_weight': [None, 'balanced'] }] results_2 = nested_cv.function_nested_cv(public_data, public_labels, pipeline,