コード例 #1
0
            num_workers=workers)
    #val_dataset = CityscapesLoader(split = 'val')
    val_loader = DataLoader(
            val_dataset, batch_size=batch_size, shuffle=False, num_workers=workers)


    num_class = {'SUN':37,'NYU':40,'CITY':19}[args.dataset]
    ignore_label = {'SUN':255,'NYU':255,'CITY':250}[args.dataset]
    loss = nn.CrossEntropyLoss(ignore_index=ignore_label)
    patience = {'SUN':15,'NYU':60,'CITY':40}[args.dataset]

    print('Train sample number: %d' % len(train_dataset))
    print('Val sample number: %d' % len(val_dataset))
    ############################################################

    net = network((3,640),num_classes = num_class,resnet_factory = models.resnet101, freeze_resnet=False)
    
    start_epoch = 1
    lr = base_lr
    best_val_loss = float('inf')
    log_mode = 'w'
    if os.path.exists(args.resume):
        print('loading checkpoint %s'%(args.resume))
        checkpoint = torch.load(args.resume)
        start_epoch = checkpoint['epoch'] + 1
        lr = checkpoint['lr']
        best_val_loss = checkpoint['best_val_loss']
        net.load_state_dict(checkpoint['state_dict'])
        log_mode = 'a'

    net = net.cuda()
コード例 #2
0
    parser.add_argument('-d', '--dataset', default='NYU', help='NYU or SUN', type=str)
    args = parser.parse_args()
    save_dir = './%s_RDFnet/'%args.dataset
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)
    
    val_dataset = RGBD(args.dataset,'val')
    val_loader = DataLoader(
            val_dataset, batch_size=batch_size, shuffle=False, num_workers=workers)
    num_class = {'SUN':37,'NYU':40}[args.dataset]
    ignore_label = {'SUN':255,'NYU':-1}[args.dataset]
    loss = nn.CrossEntropyLoss(ignore_index=ignore_label)
    patience = {'SUN':10,'NYU':40}[args.dataset]
    print('Val sample number: %d' % len(val_dataset))
    ############################################################
    net = network(640,num_classes = num_class,resnet_factory = models.resnet152, freeze_resnet=False)
    loss = nn.CrossEntropyLoss(ignore_index=ignore_label)

   

    net = net.cuda()
    loss = loss.cuda()
    cudnn.benchmark = True
    net = DataParallel(net)



    print('loading checkpoint ')
    checkpoint = torch.load(val_path)
    net.load_state_dict(checkpoint['state_dict'])