def get_resnet101_train(args): from net.symbol_resnet import get_resnet_train if not args.pretrained: args.pretrained = 'model/resnet-101-0000.params' if not args.save_prefix: args.save_prefix = 'model/resnet101' args.img_pixel_means = (0.0, 0.0, 0.0) args.img_pixel_stds = (1.0, 1.0, 1.0) args.net_fixed_params = ['conv0', 'stage1', 'gamma', 'beta'] args.rpn_feat_stride = 16 args.rcnn_feat_stride = 16 args.rcnn_pooled_size = (14, 14) return get_resnet_train(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios, rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk, rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh, rpn_min_size=args.rpn_min_size, rpn_batch_rois=args.rpn_batch_rois, num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride, rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size, rcnn_batch_rois=args.rcnn_batch_rois, rcnn_fg_fraction=args.rcnn_fg_fraction, rcnn_fg_overlap=args.rcnn_fg_overlap, rcnn_bbox_stds=args.rcnn_bbox_stds, units=(3, 4, 23, 3), filter_list=(256, 512, 1024, 2048))