コード例 #1
0
def load_net(dataset, net_type, nb_classes):

    if net_type == 'bn_inception':
        model = net.bn_inception(pretrained=True)
        model.last_linear = nn.Linear(1024, nb_classes)
        model.load_state_dict(
            torch.load('net/finetuned_' + dataset + '_' + net_type + '.pth'))

    elif net_type == 'densenet121':
        model = net.densenet121(pretrained=True)
        model.classifier = nn.Linear(1024, nb_classes)
        model.load_state_dict(
            torch.load('net/finetuned_' + dataset + '_' + net_type + '.pth'))

    elif net_type == 'densenet161':
        model = net.densenet161(pretrained=True)
        model.classifier = nn.Linear(2208, nb_classes)
        model.load_state_dict(
            torch.load('net/finetuned_' + dataset + '_' + net_type + '.pth'))

    elif net_type == 'densenet169':
        model = net.densenet169(pretrained=True)
        model.classifier = nn.Linear(1664, nb_classes)
        model.load_state_dict(
            torch.load('net/finetuned_' + dataset + '_' + net_type + '.pth'))

    elif net_type == 'densenet201':
        model = net.densenet201(pretrained=True)
        model.classifier = nn.Linear(1920, nb_classes)
        model.load_state_dict(
            torch.load('net/finetuned_' + dataset + '_' + net_type + '.pth'))
    return model
コード例 #2
0


# --------------------------------
# Load pre-trained model & weights
# --------------------------------

# Backbone Model
trained_dataset = 'inshop'
model_name      = 'bn_inception'
length = 6400  # CUB: 2500 | Cars: 4900 | SOP: 8100 | In-shop: 6400

if model_name == 'googlenet':
    model = googlenet(embedding_size=args.sz_embedding, pretrained=True, is_norm=args.l2_norm, bn_freeze = args.bn_freeze)
elif model_name == 'bn_inception':
    model = bn_inception(embedding_size=args.sz_embedding, pretrained=True, is_norm=args.l2_norm, bn_freeze = args.bn_freeze)
elif model_name == 'resnet50':
    model = Resnet50(embedding_size=args.sz_embedding, pretrained=True, is_norm=args.l2_norm, bn_freeze = args.bn_freeze)
model = model.cuda()

if args.gpu_id == -1:
    model = nn.DataParallel(model)


# Load pre-trained weights
if trained_dataset == 'cub':
    print("CUB!")
    path = 'path/to/cub_weights.pth'
elif trained_dataset == 'cars':
    print("Cars!")
    path = 'path/to/cars_weights.pth'
コード例 #3
0
                                    num_workers=args.nb_workers,
                                    drop_last=True,
                                    pin_memory=True)

dl_ev = torch.utils.data.DataLoader(dataset.Data.factory(
    type=type,
    root=args.root_folder,
    labels=list(range(args.nb_classes, 2 * args.nb_classes)),
    is_extracted=args.is_extracted,
    transform=dataset.utils.make_transform(is_train=False)),
                                    batch_size=args.sz_batch,
                                    shuffle=False,
                                    num_workers=args.nb_workers,
                                    pin_memory=True)

model = net.bn_inception(pretrained=True)
net.embed(model, sz_embedding=args.sz_embedding)
model = model.cuda()

criterion = proxynca.ProxyNCA(args.sz_embedding, args.nb_classes,
                              args.sz_batch).cuda()

opt = torch.optim.Adam(
    [
        {  # embedding parameters
            'params': model.embedding_layer.parameters(),
            'lr': args.lr_embedding
        },
        {  # proxy nca parameters
            'params': criterion.parameters(),
            'lr': args.lr_proxynca
コード例 #4
0
    def prepare_model(self, base_model_name, num_classes):
        """
        base_model: string contains the model name 
        this function is used to modify the last layer (fully connected layer)
        for a given architecture to suit our dataset number of actions.
        """
        #add other architectures later
        if 'resnet' in base_model_name:
            #Load pretrained model
            self.base_model = getattr(torchvision.models, base_model_name)(pretrained=True)     
            self.last_layer_name = 'fc'
            #set the input size for the model
            self.input_size = 224                                                               
            self.input_mean = [0.485, 0.456, 0.406]                                            
            self.input_std = [0.229, 0.224, 0.225]                                               

            #There's no point of substarct means from RGBDiff frames
            if self.modality == 'RGBDiff':
                #[0.485, 0.456, 0.406 , 0, 0, 0, 0, 0,.....]
                self.input_mean = [0.485, 0.456, 0.406] + [0] * 3 * self.new_length  
                #Expand the list with the average 0.452                     
                self.input_std = self.input_std + [np.mean(self.input_std) * 2] * 3 * self.new_length 
                
        #BNInception doesn't exist in torchvision models, so we have to get it from net folder
        elif base_model_name == 'BNInception':
            import net
            self.base_model = net.bn_inception(pretrained = True)
           
            self.last_layer_name = 'last_linear'
            self.input_size = 224
            self.input_mean = [104, 117, 128]
            self.input_std = [1]
            
            #BNInception takes input in range of (0~255), so only mean subtraction should be used in preprocessing.
            #This is different from ResNet models, which take input in the range of (0~1).
            if self.modality == 'RGBDiff':
              self.input_mean = self.input_mean * (1+self.new_length)
              
        else:
            raise ValueError('Unknown base model: {}'.format(base_model_name))
            
                    
        
        #Get the input size for the last layer of CNN
        features_dim = getattr(self.base_model, self.last_layer_name).in_features                       
        
        #In case of no dropout,Only nn.Linear will be added
        if self.dropout == 0:
            setattr(self.base_model, self.last_layer_name, nn.Linear(features_dim, num_classes))
            self.new_fc = None
            print('The modified linear layer is :', getattr(self.base_model, self.last_layer_name))  
            
        #In case of dropout, only nn.Dropout will be added and nn.Linear will be prepared to be added later
        else:
            setattr(self.base_model, self.last_layer_name, nn.Dropout(self.dropout))
            self.new_fc = nn.Linear(features_dim, num_classes)
            print('Dropout Layer added and The modified linear layer is :',self.new_fc)
        
        #Modify Wighets of newly created Linear layer
        std=0.001
        if self.new_fc == None:
            normal_(getattr(self.base_model, self.last_layer_name).weight,0,std)
            constant_(getattr(self.base_model, self.last_layer_name).bias,0)
        else:
            normal_(self.new_fc.weight, 0, std)
            constant_(self.new_fc.bias,0)
コード例 #5
0
ファイル: train2.py プロジェクト: jillerhaus/Proxy-NCA
 def setup_model(args=args):
     model = net.bn_inception(pretrained=True)
     net.embed(model, sz_embedding=args.sz_embedding)
     model = model.cuda()
     return model
コード例 #6
0
parser.add_argument('--net_type',
                    default='densenet121',
                    type=str,
                    help='type of net we want to use')
parser.add_argument('--embed',
                    default=False,
                    type=bool,
                    help='Number of iterations we want to do for GTG')

args = parser.parse_args()

batch_size = 32
# torch.cuda.set_device(args.gpu_id)

if args.net_type == 'bn_inception':
    model = net.bn_inception(pretrained=True, nb_classes=args.nb_classes)
    model.last_linear = nn.Linear(1024, args.nb_classes)
    if args.embed:
        model = net.Inception_embed(model, 1024, args.sz_embedding,
                                    args.nb_classes)

elif args.net_type == 'resnet18':
    model = net.resnet18(pretrained=True)
    model.fc = nn.Linear(512, args.nb_classes)
elif args.net_type == 'resnet34':
    model = net.resnet34(pretrained=True)
    model.fc = nn.Linear(512, args.nb_classes)
elif args.net_type == 'resnet50':
    model = net.resnet50(pretrained=True)
    model.fc = nn.Linear(2048, args.nb_classes)
elif args.net_type == 'resnet101':
コード例 #7
0
ファイル: train.py プロジェクト: frkhit/proxy-nca
)

dl_ev = torch.utils.data.DataLoader(
    dataset.Birds(
        root = args.cub_root, 
        labels = list(range(args.nb_classes, 2 * args.nb_classes)),
        is_extracted = args.cub_is_extracted,
        transform = dataset.utils.make_transform(is_train = False)
    ),
    batch_size = args.sz_batch,
    shuffle = False,
    num_workers = args.nb_workers,
    pin_memory = True
)

model = net.bn_inception(pretrained = True)
net.embed(model, sz_embedding=args.sz_embedding)
model = model.cuda()

criterion = proxynca.ProxyNCA(args.sz_embedding, args.nb_classes, 
        args.sz_batch).cuda()

opt = torch.optim.Adam(
    [
        { # embedding parameters
            'params': model.embedding_layer.parameters(), 
            'lr' : args.lr_embedding
        },
        { # proxy nca parameters
            'params': criterion.parameters(), 
            'lr': args.lr_proxynca