コード例 #1
0
ファイル: BCSF.py プロジェクト: liyaochong/BCSF
def Pred():
    global result, label
    image = cv2.imread(filepath)

    print("[INFO] loading and preprocessing image...")
    image = image_utils.load_img(filepath, target_size=(224, 224))
    image = image_utils.img_to_array(image)
    image = np.expand_dims(image, axis=0)

    start = timeit.default_timer()
    # load the network
    print("[INFO] loading network...")
    model, tags_from_model = net.load("model")
    net.compile(model)

    # classify the image
    print("[INFO] classifying image...")
    preds = model.predict(image)
    y_classes = probas_to_classes(preds)
    if (y_classes == 1):
        print "it is cancerous"
        result = "malignant"
    else:
        print "it is benign"
        result = "benign"
    label.config(text=result)
    stop = timeit.default_timer()
    exec_time = stop - start
    print "Predicting Execution Time is %f s" % exec_time
    return
コード例 #2
0
def get_weights(model_path):
    model, tags = net.load(model_path)
    net.compile(model)
    weights_map = {}
    for layer in model.layers:
        weights = layer.get_weights()
        weights_map[layer.name] = weights
    return weights_map
コード例 #3
0
ファイル: layers.py プロジェクト: wonglkd/mainstream
def get_layers(model_path):
    model, tags = net.load(model_path)
    net.compile(model)

    print len(model.layers)
    count = 0
    for layer in model.layers:
        print count + "," + layer.get_config()["name"]
        count += 1
コード例 #4
0
ファイル: inference_h5.py プロジェクト: wonglkd/mainstream
def predict(model_path, dataset_dir):
    model, tags = net.load(model_path)
    data_X, data_y, tags = dataset.dataset(dataset_dir, 299, False)

    net.compile(model)
    predictions = []
    for d in data_X:
        X = np.expand_dims(d, axis=0)
        prediction = model.predict(X)
        predictions.append(prediction[0])
    return predictions
コード例 #5
0
ファイル: inference_h5.py プロジェクト: ginger0106/mainstream
def predict_with_dataset(model_path, dataset):
    model, tags = net.load(model_path)

    data_X = dataset.X
    data_y = dataset.y

    net.compile(model)
    predictions = []
    for d in data_X:
        X = np.expand_dims(d, axis=0)
        prediction = model.predict(X)
        predictions.append(prediction[0])
    return predictions
コード例 #6
0
ファイル: inference_h5.py プロジェクト: ginger0106/mainstream
 def __init__(
     self,
     model_path,
     memory_location='../mainstream-analysis/output/mainstream/predictions'
 ):
     super(Model, self).__init__()
     self.model, self.tags = net.load(model_path)
     net.compile(self.model)
     self.dim = 224 if 'mobilenets' in model_path else 299
     print 'Tags', self.tags
     self.memory = {}
     if not os.path.isdir(memory_location):
         os.mkdir(memory_location)
     assert os.path.isdir(memory_location)
     self.memory_location = os.path.join(memory_location,
                                         os.path.basename(model_path))
     if not os.path.isdir(self.memory_location):
         os.mkdir(self.memory_location)
コード例 #7
0
ファイル: inference_h5.py プロジェクト: ginger0106/mainstream
def predict(model_path, dataset_dir):
    model, tags = net.load(model_path)
    print tags
    # Inception
    # data_X, data_y, tags = dataset.dataset(dataset_dir, 299, False)
    # MobileNets
    data_X, data_y, tags = dataset.dataset(dataset_dir, 224, False)

    net.compile(model)
    predictions = []
    # print 'shape', data_X.shape
    # prediction = model.predict(data_X)
    # print prediction.shape
    # prediction = prediction[:, 0]
    for d in data_X:
        X = np.expand_dims(d, axis=0)
        prediction = model.predict(X)
        predictions.append(prediction[0])
    return predictions
コード例 #8
0
def save_imagenet(net_architecture, prefix):

    K.set_learning_phase(1)

    # Set neural net architecture
    if net_architecture == "InceptionV3":
        model = InceptionV3(weights="imagenet", include_top=True)
    elif net_architecture == "ResNet50":
        model = ResNet50(weights="imagenet", include_top=True)
    elif net_architecture == "MobileNet":
        model = MobileNet(weights="imagenet", include_top=True)
    else:
        print "[ERROR] Didn't recognize net ", net_architecture
        sys.exit(-1)

    net.compile(model)
    net.save_pb(model, prefix)
    freeze.freeze(prefix)
    return
コード例 #9
0
ファイル: inference_h5.py プロジェクト: ginger0106/mainstream
def predict_by_tag(model_path, dataset_dir, tag):
    model, tags = net.load(model_path)
    tag_index = [i for i, t in enumerate(tags) if t == tag][0]
    # Inception
    # data_X = dataset.dataset_with_root_dir(dataset_dir, 299)
    # MobileNets
    data_X = dataset.dataset_with_root_dir(dataset_dir, 224)
    print tags

    net.compile(model)
    predictions = []
    for d in data_X:
        X = np.expand_dims(d, axis=0)
        prediction = (model.predict(X)).tolist()[0]
        argmax = prediction.index(max(prediction))
        if argmax == tag_index:
            predictions.append(1)
        else:
            predictions.append(0)
    return predictions
コード例 #10
0
        vis_image = 255 * np.ones(
            (vis_image_size, vis_image_size, 3), dtype='uint8')
        example_counts = defaultdict(int)
        for (predicted_tag, actual_tag,
             normalized_image) in zip(y_pred, y_test, X_test):
            example_count = example_counts[(predicted_tag, actual_tag)]
            if example_count >= bucket_size**2:
                continue
            image = dataset.reverse_preprocess_input(normalized_image)
            image = image.transpose((1, 2, 0))
            image = scipy.misc.imresize(
                image, (image_size, image_size)).astype(np.uint8)
            tilepos_x = bucket_size * predicted_tag
            tilepos_y = bucket_size * actual_tag
            tilepos_x += example_count % bucket_size
            tilepos_y += example_count // bucket_size
            pos_x, pos_y = tilepos_x * image_size, tilepos_y * image_size
            vis_image[pos_y:pos_y + image_size,
                      pos_x:pos_x + image_size, :] = image
            example_counts[(predicted_tag, actual_tag)] += 1
        vis_image[::image_size * bucket_size, :] = 0
        vis_image[:, ::image_size * bucket_size] = 0
        scipy.misc.imsave(vis_filename, vis_image)


model, tags_from_model = net.load("model")
assert tags == tags_from_model
net.compile(model)

evaluate(model, "classifier.png")
コード例 #11
0
ファイル: classify.py プロジェクト: upbit/keras-finetuning
    if vis_filename is not None:
        bucket_size = 10
        image_size = n // 4 # right now that's 56
        vis_image_size = nb_classes * image_size * bucket_size
        vis_image = 255 * np.ones((vis_image_size, vis_image_size, 3), dtype='uint8')
        example_counts = defaultdict(int)
        for (predicted_tag, actual_tag, normalized_image) in zip(y_pred, y_test, X_test):
            example_count = example_counts[(predicted_tag, actual_tag)]
            if example_count >= bucket_size**2:
                continue
            image = dataset.reverse_preprocess_input(normalized_image)
            image = image.transpose((1, 2, 0))
            image = scipy.misc.imresize(image, (image_size, image_size)).astype(np.uint8)
            tilepos_x = bucket_size * predicted_tag
            tilepos_y = bucket_size * actual_tag
            tilepos_x += example_count % bucket_size
            tilepos_y += example_count // bucket_size
            pos_x, pos_y = tilepos_x * image_size, tilepos_y * image_size
            vis_image[pos_y:pos_y+image_size, pos_x:pos_x+image_size, :] = image
            example_counts[(predicted_tag, actual_tag)] += 1
        vis_image[::image_size * bucket_size, :] = 0
        vis_image[:, ::image_size * bucket_size] = 0
        scipy.misc.imsave(vis_filename, vis_image)


model, tags_from_model = net.load("model")
assert tags == tags_from_model
net.compile(model)

evaluate(model, "classifier.png")