コード例 #1
0
def main():
    # location of depth module, config and parameters

    model_name = 'depthnormals_nyud_alexnet'
    #model_name = 'depthnormals_nyud_vgg'

    #    module_fn = 'models/iccv15/%s.py' % model_name
    #    config_fn = 'models/iccv15/%s.conf' % model_name
    #    params_dir = 'weights/iccv15/%s' % model_name

    module_fn = 'models/iccv15/depthnormals_nyud_alexnet.py'  #% model_name
    config_fn = 'models/iccv15/depthnormals_nyud_alexnet.conf'  #% model_name
    params_dir = 'weights/iccv15/depthnormals_nyud_alexnet'  #% model_name
    # load depth network
    machine = net.create_machine(module_fn, config_fn, params_dir)

    # demo image
    rgb = Image.open('thyroid.jpg')
    rgb = rgb.resize((320, 240), Image.BICUBIC)
    #rergb = Image.fromarray(rgb)
    rgb.save("thyroid.jpg")

    # build depth inference function and run
    rgb_imgs = np.asarray(rgb).reshape((1, 240, 320, 3))
    (pred_depths, pred_normals) = machine.infer_depth_and_normals(rgb_imgs)

    # save prediction
    depth_img_np = depth_montage(pred_depths)
    depth_img = Image.fromarray((255 * depth_img_np).astype(np.uint8))
    depth_img.save('demo_depth_prediction_thyroid.png')

    normals_img_np = normals_montage(pred_normals)
    normals_img = Image.fromarray((255 * normals_img_np).astype(np.uint8))
    normals_img.save('demo_normals_prediction_thyroid.png')
コード例 #2
0
def main():
    # location of depth module, config and parameters

    model_name = 'depthnormals_nyud_alexnet'
    #model_name = 'depthnormals_nyud_vgg'

#    module_fn = 'models/iccv15/%s.py' % model_name
#    config_fn = 'models/iccv15/%s.conf' % model_name
#    params_dir = 'weights/iccv15/%s' % model_name

    module_fn = 'models/iccv15/depthnormals_nyud_alexnet.py' #% model_name
    config_fn = 'models/iccv15/depthnormals_nyud_alexnet.conf' #% model_name
    params_dir = 'weights/iccv15/depthnormals_nyud_alexnet' #% model_name
    # load depth network
    machine = net.create_machine(module_fn, config_fn, params_dir)

    # demo image
    rgb = Image.open('thyroid.jpg')
    rgb = rgb.resize((320, 240), Image.BICUBIC)
    #rergb = Image.fromarray(rgb)
    rgb.save("thyroid.jpg")

    # build depth inference function and run
    rgb_imgs = np.asarray(rgb).reshape((1, 240, 320, 3))
    (pred_depths, pred_normals) = machine.infer_depth_and_normals(rgb_imgs)

    # save prediction
    depth_img_np = depth_montage(pred_depths)
    depth_img = Image.fromarray((255*depth_img_np).astype(np.uint8))
    depth_img.save('demo_depth_prediction_thyroid.png')

    normals_img_np = normals_montage(pred_normals)
    normals_img = Image.fromarray((255*normals_img_np).astype(np.uint8))
    normals_img.save('demo_normals_prediction_thyroid.png')
コード例 #3
0
def main():
    # location of depth module, config and parameters
    module_fn = 'models/depth_kitti.py'
    config_fn = 'models/depth_kitti.conf'
    params_dir = 'weights/depth_kitti'

    # load depth network
    machine = net.create_machine(module_fn, config_fn, params_dir)

    # demo image
    rgb = Image.open('demo_kitti_rgb.jpg')
    rgb = rgb.resize((612, 184), Image.BICUBIC)

    # build depth inference function and run
    rgb_imgs = np.asarray(rgb).reshape((1, 184, 612, 3))
    pred_depths = machine.infer_depth(rgb_imgs)

    # save prediction
    (m, M) = (pred_depths.min(), pred_depths.max())
    depth_img_np = (pred_depths[0] - m) / (M - m)
    depth_img = Image.fromarray((255 * depth_img_np).astype(np.uint8))
    depth_img.save('demo_kitti_depth_prediction.png')

    import matplotlib.pyplot as plt
    plt.ion()
    import ipdb
    ipdb.set_trace()
    pass
コード例 #4
0
def machine2model():
    module_fn = 'models/iccv15/depthnormals_nyud_alexnet.py'  #% model_name
    config_fn = 'models/iccv15/depthnormals_nyud_alexnet.conf'  #% model_name
    params_dir = 'weights/iccv15/depthnormals_nyud_alexnet'  #% model_name
    trainMachine = net.create_machine(module_fn, config_fn, params_dir)
    #model = trainMachine.define_machine()
    print trainMachine
    return trainMachine
コード例 #5
0
def machine2model():
    module_fn = 'models/iccv15/depthnormals_nyud_alexnet.py' #% model_name
    config_fn = 'models/iccv15/depthnormals_nyud_alexnet.conf' #% model_name
    params_dir = 'weights/iccv15/depthnormals_nyud_alexnet' #% model_name
    trainMachine = net.create_machine(module_fn, config_fn, params_dir)
    #model = trainMachine.define_machine()
    print trainMachine
    return trainMachine
コード例 #6
0
ファイル: eigen_depth.py プロジェクト: yuvval/depth_video
def load_depth_nn(
    model_name="depthnormals_nyud_vgg", nn_path="/afs/csail.mit.edu/u/y/yuvval/externals/dnl-depthnormals/"
):
    # model_name = 'depthnormals_nyud_alexnet' # an alternative model_name

    # add path of the neural network
    sys.path.append(nn_path)
    from utils import depth_montage, normals_montage
    import net

    depth_nn = dict()
    # location of depth module, config and parameters
    depth_nn["model_name"] = model_name
    depth_nn["module_fn"] = "%smodels/iccv15/%s.py" % (nn_path, model_name)
    depth_nn["config_fn"] = "%smodels/iccv15/%s.conf" % (nn_path, model_name)
    depth_nn["params_dir"] = "%sweights/iccv15/%s" % (nn_path, model_name)

    # load depth network
    depth_nn["machine"] = net.create_machine(depth_nn["module_fn"], depth_nn["config_fn"], depth_nn["params_dir"])

    return depth_nn
コード例 #7
0
def load_depth_nn(
        model_name='depthnormals_nyud_vgg',
        nn_path='/afs/csail.mit.edu/u/y/yuvval/externals/dnl-depthnormals/'):
    #model_name = 'depthnormals_nyud_alexnet' # an alternative model_name

    # add path of the neural network
    sys.path.append(nn_path)
    from utils import depth_montage, normals_montage
    import net
    depth_nn = dict()
    # location of depth module, config and parameters
    depth_nn['model_name'] = model_name
    depth_nn['module_fn'] = '%smodels/iccv15/%s.py' % (nn_path, model_name)
    depth_nn['config_fn'] = '%smodels/iccv15/%s.conf' % (nn_path, model_name)
    depth_nn['params_dir'] = '%sweights/iccv15/%s' % (nn_path, model_name)

    # load depth network
    depth_nn['machine'] = net.create_machine(depth_nn['module_fn'],
                                             depth_nn['config_fn'],
                                             depth_nn['params_dir'])

    return depth_nn
コード例 #8
0
def main():
    # location of depth module, config and parameters
    module_fn = 'models/depth.py'
    config_fn = 'models/depth.conf'  #网络结构
    params_dir = 'weights/depth'  #网络相关参数

    # load depth network
    machine = net.create_machine(module_fn, config_fn, params_dir)

    # demo image
    rgb = Image.open('demo_nyud_rgb.jpg')
    rgb = rgb.resize((320, 240), Image.BICUBIC)

    # build depth inference function and run
    rgb_imgs = np.asarray(rgb).reshape((1, 240, 320, 3))
    pred_depths = machine.infer_depth(rgb_imgs)

    # save prediction
    (m, M) = (pred_depths.min(), pred_depths.max())
    depth_img_np = (pred_depths[0] - m) / (M - m)
    depth_img = Image.fromarray((255 * depth_img_np).astype(np.uint8))
    depth_img.save('demo_nyud_depth_prediction.png')
コード例 #9
0
def main():
    # location of depth module, config and parameters
    module_fn = 'models/depth.py'
    config_fn = 'models/depth.conf'#网络结构
    params_dir = 'weights/depth'#网络相关参数

    # load depth network
    machine = net.create_machine(module_fn, config_fn, params_dir)

    # demo image
    rgb = Image.open('demo_nyud_rgb.jpg')
    rgb = rgb.resize((320, 240), Image.BICUBIC)

    # build depth inference function and run
    rgb_imgs = np.asarray(rgb).reshape((1, 240, 320, 3))
    pred_depths = machine.infer_depth(rgb_imgs)

    # save prediction
    (m, M) = (pred_depths.min(), pred_depths.max())
    depth_img_np = (pred_depths[0] - m) / (M - m)
    depth_img = Image.fromarray((255*depth_img_np).astype(np.uint8))
    depth_img.save('demo_nyud_depth_prediction.png')
コード例 #10
0
import os
import sys
import numpy as np
from PIL import Image
import net

def predictDepth(filelist, pwd):
	image_w = 416
	image_h = 218
    # location of depth module, config and parameters
    module_fn = pwd + '/eigen/models/depth_kitti.py'
    config_fn = pwd + '/eigen/models/depth_kitti.conf'
    params_dir = pwd + '/eigen/weights/depth_kitti'

    # load depth network
    machine = net.create_machine(module_fn, config_fn, params_dir)
    rgb_imgs = []
    # demo image
    for filename in filelist:
    	rgb = Image.open(filename)
    	rgb = rgb.resize((image_w, image_h), Image.BICUBIC)
		rgb_imgs.append(rgb)
    	# build depth inference function and run
    rgb_imgs = np.asarray(rgb_imgs).reshape((len(filelist), image_h, image_w, 3))
    pred_depths = machine.infer_depth(rgb_imgs)

    # save prediction
    # (m, M) = (pred_depths.min(), pred_depths.max())
    # depth_img_np = (pred_depths[0] - m) / (M - m)
    np.save(pwd + "/eigen/output/depth.npy", pred_depths)
    return pred_depths