コード例 #1
0
def test_gModule():
	# test input layer
	inputlayer1 = Input(name='input', inputshape=(384, 256, 3), datatype='uint')
	model = gModule(inputlayers=inputlayer1)
	assert model.layers['input'].top is None
	assert model.layers['input'].bottom is None
	model.compile(np.ndarray((16, 384, 256, 3)))
	assert_allclose(model.batch_size, 16)

	conv1 = model.add(Convolution(name='conv1', bottom=inputlayer1, nOutputPlane=64, kernal_size=3, 
		padding=1))
	assert model.layers['input'].top == [model.layers['conv1']]
	assert model.layers['conv1'].bottom == [inputlayer1]

	model.add(Convolution(name='conv2_1', bottom=conv1, nOutputPlane=128, kernal_size=3, padding=1))
	assert model.layers['conv1'].top == [model.layers['conv2_1']]
	assert model.layers['conv2_1'].bottom == [model.layers['conv1']]
	
	model.add(Convolution(name='conv2_2', bottom=conv1, nOutputPlane=128, kernal_size=3, padding=1))
	assert model.layers['conv1'].top == [model.layers['conv2_1'], model.layers['conv2_2']]
	assert model.layers['conv2_2'].bottom == [model.layers['conv1']]

	model.compile(np.ndarray((16, 384, 256, 3)))
	assert_allclose(model.nb_entries, 4)
	assert_allclose(model.batch_size, 16)
コード例 #2
0
def main():
    # test input layer
    inputlayer1 = Input(name='input',
                        inputshape=(384, 256, 3),
                        datatype='uint')
    model = gModule(inputlayers=inputlayer1)
    conv1 = model.add(
        Convolution(name='conv1',
                    bottom=inputlayer1,
                    nOutputPlane=64,
                    kernal_size=3,
                    padding=1))
    model.add(
        Convolution(name='conv2_1',
                    bottom=conv1,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1))
    model.add(
        Convolution(name='conv2_2',
                    bottom=conv1,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1))
    model.compile(np.ndarray((16, 384, 256, 3)))

    # model.remove('conv2_2')
    # assert not model.layers.has_key('conv1')
    # assert not model.blobs.has_key('conv1')
    # model.compile(np.ndarray((16, 384, 256, 3)))
    # assert_allclose(model.nb_entries, 3)

    model.summary()
コード例 #3
0
def main():
    # create network
    input_data = np.ndarray((1, 5120, 3840, 3))
    inputlayer = Input(name='input',
                       inputshape=input_data.shape[1:],
                       datatype='uint')
    model = gModule(inputlayer)

    # define the head
    conv1_1 = model.add(
        Convolution(name='conv1_1',
                    bottom=inputlayer,
                    nOutputPlane=64,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv1_2 = model.add(
        Convolution(name='conv1_2',
                    bottom=conv1_1,
                    nOutputPlane=64,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    # pool1 = model.add(Pooling(name='pool1', bottom=conv1_2, kernal_size=2, stride=2))

    conv2_1 = model.add(
        Convolution(name='conv2_1',
                    bottom=conv1_2,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv2_2 = model.add(
        Convolution(name='conv2_2',
                    bottom=conv2_1,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    # pool2 = model.add(Pooling(name='pool2', bottom=conv2_2, kernal_size=2, stride=2))

    conv3_1 = model.add(
        Convolution(name='conv3_1',
                    bottom=conv2_2,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv3_2 = model.add(
        Convolution(name='conv3_2',
                    bottom=conv3_1,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv3_3 = model.add(
        Convolution(name='conv3_3',
                    bottom=conv3_2,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv3_4 = model.add(
        Convolution(name='conv3_4',
                    bottom=conv3_3,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    # pool3 = model.add(Pooling(name='pool3', bottom=conv3_4, kernal_size=2, stride=2))

    conv4_1 = model.add(
        Convolution(name='conv4_1',
                    bottom=conv3_4,
                    nOutputPlane=512,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv4_2 = model.add(
        Convolution(name='conv4_2',
                    bottom=conv4_1,
                    nOutputPlane=512,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv4_3 = model.add(
        Convolution(name='conv4_3',
                    bottom=conv4_2,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv4_4 = model.add(
        Convolution(name='conv4_4',
                    bottom=conv4_3,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))

    # define stage 1
    conv5_1_l = model.add(
        Convolution(name='conv5_1_l',
                    bottom=conv4_4,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv5_2_l = model.add(
        Convolution(name='conv5_2_l',
                    bottom=conv5_1_l,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv5_3_l = model.add(
        Convolution(name='conv5_3_l',
                    bottom=conv5_2_l,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv5_4_l = model.add(
        Convolution(name='conv5_4_l',
                    bottom=conv5_3_l,
                    nOutputPlane=512,
                    kernal_size=1,
                    padding=0,
                    datatype='boolean'))
    conv5_5_l = model.add(
        Convolution(name='conv5_5_l',
                    bottom=conv5_4_l,
                    nOutputPlane=26,
                    kernal_size=1,
                    padding=0,
                    datatype='boolean'))

    conv5_1_r = model.add(
        Convolution(name='conv5_1_r',
                    bottom=conv4_4,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv5_2_r = model.add(
        Convolution(name='conv5_2_r',
                    bottom=conv5_1_r,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv5_3_r = model.add(
        Convolution(name='conv5_3_r',
                    bottom=conv5_2_r,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='boolean'))
    conv5_4_r = model.add(
        Convolution(name='conv5_4_r',
                    bottom=conv5_3_r,
                    nOutputPlane=512,
                    kernal_size=1,
                    padding=0,
                    datatype='boolean'))
    conv5_5_r = model.add(
        Convolution(name='conv5_5_r',
                    bottom=conv5_4_r,
                    nOutputPlane=13,
                    kernal_size=1,
                    padding=0,
                    datatype='boolean'))

    concat_stage2 = model.add(
        Concat(name='concat_stage2',
               bottom=[conv4_4, conv5_5_l, conv5_5_r],
               axis=2))

    # concat_stage3 = stage_network(model, conv4_4, concat_stage2, 2)
    # concat_stage4 = stage_network(model, conv4_4, concat_stage3, 3)
    # concat_stage5 = stage_network(model, conv4_4, concat_stage4, 4)
    # concat_stage6 = stage_network(model, conv4_4, concat_stage5, 5)

    # define stage 6 (output stage)
    stage_number = 2
    conv1_stage6_l = model.add(
        Convolution(name='conv1_stage%d_l' % stage_number,
                    bottom=concat_stage2,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv2_stage6_l = model.add(
        Convolution(name='conv2_stage%d_l' % stage_number,
                    bottom=conv1_stage6_l,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv3_stage6_l = model.add(
        Convolution(name='conv3_stage%d_l' % stage_number,
                    bottom=conv2_stage6_l,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv4_stage6_l = model.add(
        Convolution(name='conv4_stage%d_l' % stage_number,
                    bottom=conv3_stage6_l,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv5_stage6_l = model.add(
        Convolution(name='conv5_stage%d_l' % stage_number,
                    bottom=conv4_stage6_l,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv6_stage6_l = model.add(
        Convolution(name='conv6_stage%d_l' % stage_number,
                    bottom=conv5_stage6_l,
                    nOutputPlane=128,
                    kernal_size=1,
                    padding=0,
                    datatype='boolean'))
    conv7_stage6_l = model.add(
        Convolution(name='conv7_stage%d_l' % stage_number,
                    bottom=conv6_stage6_l,
                    nOutputPlane=13,
                    kernal_size=1,
                    padding=0,
                    datatype='boolean'))

    conv1_stage6_r = model.add(
        Convolution(name='conv1_stage%d_r' % stage_number,
                    bottom=concat_stage2,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv2_stage6_r = model.add(
        Convolution(name='conv2_stage%d_r' % stage_number,
                    bottom=conv1_stage6_r,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv3_stage6_r = model.add(
        Convolution(name='conv3_stage%d_r' % stage_number,
                    bottom=conv2_stage6_r,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv4_stage6_r = model.add(
        Convolution(name='conv4_stage%d_r' % stage_number,
                    bottom=conv3_stage6_r,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv5_stage6_r = model.add(
        Convolution(name='conv5_stage%d_r' % stage_number,
                    bottom=conv4_stage6_r,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='boolean'))
    conv6_stage6_r = model.add(
        Convolution(name='conv6_stage%d_r' % stage_number,
                    bottom=conv5_stage6_r,
                    nOutputPlane=128,
                    kernal_size=1,
                    padding=0,
                    datatype='boolean'))
    conv7_stage6_r = model.add(
        Convolution(name='conv7_stage%d_r' % stage_number,
                    bottom=conv6_stage6_r,
                    nOutputPlane=26,
                    kernal_size=1,
                    padding=0,
                    datatype='boolean'))

    model.compile(input_data)
    model.summary()
コード例 #4
0
def main():
    # create network
    input_data = np.ndarray((1, 512, 384, 3))
    inputlayer = Input(name='input',
                       inputshape=input_data.shape[1:],
                       datatype='uint')
    model = gModule(inputlayer)

    # define the head
    conv1_1 = model.add(
        Convolution(name='conv1_1',
                    bottom=inputlayer,
                    nOutputPlane=64,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv1_2 = model.add(
        Convolution(name='conv1_2',
                    bottom=conv1_1,
                    nOutputPlane=64,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    pool1 = model.add(
        Pooling(name='pool1', bottom=conv1_2, kernal_size=2, stride=2))

    conv2_1 = model.add(
        Convolution(name='conv2_1',
                    bottom=pool1,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv2_2 = model.add(
        Convolution(name='conv2_2',
                    bottom=conv2_1,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    pool2 = model.add(
        Pooling(name='pool2', bottom=conv2_2, kernal_size=2, stride=2))

    conv3_1 = model.add(
        Convolution(name='conv3_1',
                    bottom=pool2,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv3_2 = model.add(
        Convolution(name='conv3_2',
                    bottom=conv3_1,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv3_3 = model.add(
        Convolution(name='conv3_3',
                    bottom=conv3_2,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv3_4 = model.add(
        Convolution(name='conv3_4',
                    bottom=conv3_3,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    pool3 = model.add(
        Pooling(name='pool3', bottom=conv3_4, kernal_size=2, stride=2))

    conv4_1 = model.add(
        Convolution(name='conv4_1',
                    bottom=pool3,
                    nOutputPlane=512,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv4_2 = model.add(
        Convolution(name='conv4_2',
                    bottom=conv4_1,
                    nOutputPlane=512,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv4_3 = model.add(
        Convolution(name='conv4_3',
                    bottom=conv4_2,
                    nOutputPlane=256,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv4_4 = model.add(
        Convolution(name='conv4_4',
                    bottom=conv4_3,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))

    # define stage 1
    conv5_1_l = model.add(
        Convolution(name='conv5_1_l',
                    bottom=conv4_4,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv5_2_l = model.add(
        Convolution(name='conv5_2_l',
                    bottom=conv5_1_l,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv5_3_l = model.add(
        Convolution(name='conv5_3_l',
                    bottom=conv5_2_l,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv5_4_l = model.add(
        Convolution(name='conv5_4_l',
                    bottom=conv5_3_l,
                    nOutputPlane=512,
                    kernal_size=1,
                    padding=0,
                    datatype='single'))
    conv5_5_l = model.add(
        Convolution(name='conv5_5_l',
                    bottom=conv5_4_l,
                    nOutputPlane=38,
                    kernal_size=1,
                    padding=0,
                    datatype='single'))

    conv5_1_r = model.add(
        Convolution(name='conv5_1_r',
                    bottom=conv4_4,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv5_2_r = model.add(
        Convolution(name='conv5_2_r',
                    bottom=conv5_1_r,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv5_3_r = model.add(
        Convolution(name='conv5_3_r',
                    bottom=conv5_2_r,
                    nOutputPlane=128,
                    kernal_size=3,
                    padding=1,
                    datatype='single'))
    conv5_4_r = model.add(
        Convolution(name='conv5_4_r',
                    bottom=conv5_3_r,
                    nOutputPlane=512,
                    kernal_size=1,
                    padding=0,
                    datatype='single'))
    conv5_5_r = model.add(
        Convolution(name='conv5_5_r',
                    bottom=conv5_4_r,
                    nOutputPlane=19,
                    kernal_size=1,
                    padding=0,
                    datatype='single'))

    concat_stage2 = model.add(
        Concat(name='concat_stage2',
               bottom=[conv4_4, conv5_5_l, conv5_5_r],
               axis=2))

    concat_stage3 = stage_network(model, conv4_4, concat_stage2, 2)
    concat_stage4 = stage_network(model, conv4_4, concat_stage3, 3)
    concat_stage5 = stage_network(model, conv4_4, concat_stage4, 4)
    concat_stage6 = stage_network(model, conv4_4, concat_stage5, 5)

    # define stage 6 (output stage)
    stage_number = 6
    conv1_stage6_l = model.add(
        Convolution(name='conv1_stage%d_l' % stage_number,
                    bottom=concat_stage6,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv2_stage6_l = model.add(
        Convolution(name='conv2_stage%d_l' % stage_number,
                    bottom=conv1_stage6_l,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv3_stage6_l = model.add(
        Convolution(name='conv3_stage%d_l' % stage_number,
                    bottom=conv2_stage6_l,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv4_stage6_l = model.add(
        Convolution(name='conv4_stage%d_l' % stage_number,
                    bottom=conv3_stage6_l,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv5_stage6_l = model.add(
        Convolution(name='conv5_stage%d_l' % stage_number,
                    bottom=conv4_stage6_l,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv6_stage6_l = model.add(
        Convolution(name='conv6_stage%d_l' % stage_number,
                    bottom=conv5_stage6_l,
                    nOutputPlane=128,
                    kernal_size=1,
                    padding=0,
                    datatype='single'))
    conv7_stage6_l = model.add(
        Convolution(name='conv7_stage%d_l' % stage_number,
                    bottom=conv6_stage6_l,
                    nOutputPlane=38,
                    kernal_size=1,
                    padding=0,
                    datatype='single'))

    conv1_stage6_r = model.add(
        Convolution(name='conv1_stage%d_r' % stage_number,
                    bottom=concat_stage6,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv2_stage6_r = model.add(
        Convolution(name='conv2_stage%d_r' % stage_number,
                    bottom=conv1_stage6_r,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv3_stage6_r = model.add(
        Convolution(name='conv3_stage%d_r' % stage_number,
                    bottom=conv2_stage6_r,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv4_stage6_r = model.add(
        Convolution(name='conv4_stage%d_r' % stage_number,
                    bottom=conv3_stage6_r,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv5_stage6_r = model.add(
        Convolution(name='conv5_stage%d_r' % stage_number,
                    bottom=conv4_stage6_r,
                    nOutputPlane=128,
                    kernal_size=7,
                    padding=3,
                    datatype='single'))
    conv6_stage6_r = model.add(
        Convolution(name='conv6_stage%d_r' % stage_number,
                    bottom=conv5_stage6_r,
                    nOutputPlane=128,
                    kernal_size=1,
                    padding=0,
                    datatype='single'))
    conv7_stage6_r = model.add(
        Convolution(name='conv7_stage%d_r' % stage_number,
                    bottom=conv6_stage6_r,
                    nOutputPlane=19,
                    kernal_size=1,
                    padding=0,
                    datatype='single'))

    model.compile(input_data)

    model_path = 'cpm_model.pdf'
    chart_path = 'cpm_memory.png'
    table_path = 'cpm_table.txt'
    model.summary(model_path=model_path,
                  chart_path=chart_path,
                  table_path=table_path,
                  visualize=False)