コード例 #1
0
def load_test_model():
    if not os.path.isfile(DUMPED_MODEL) and not os.path.isfile(os.path.join(DATASET_BASE, "models", DUMPED_MODEL)):
        print("No trained model file!")
        return
    main_model = f_model(model_path=DUMPED_MODEL).cuda(GPU_ID)
    color_model = c_model().cuda(GPU_ID)
    pooling_model = p_model().cuda(GPU_ID)
    extractor = FeatureExtractor(main_model, color_model, pooling_model)
    return extractor
コード例 #2
0
def load_test_model(with_clsf=False):
    if not os.path.isfile(DUMPED_MODEL) and not os.path.isfile(
            os.path.join(DATASET_BASE, "models", DUMPED_MODEL)):
        print("No trained model file!")
        return
    main_model = f_model(model_path=DUMPED_MODEL).cuda(GPU_ID)
    color_model = c_model().cuda(GPU_ID)
    pooling_model = p_model().cuda(GPU_ID)

    if not with_clsf:
        extractor = FeatureExtractor(main_model, color_model, pooling_model)
    else:
        extractor = FeatureExtractorWithClassification(main_model, color_model,
                                                       pooling_model)
    return extractor
コード例 #3
0
# -*- coding: utf-8 -*-
import torch
import os
from myconfig import cfg
#from utils import FeatureExtractor,data_transform_test
from utils import *
from torch.autograd import Variable
from data import Fashion_attr_prediction, Fashion_inshop
from net import f_model, c_model, p_model
import numpy as np

print(cfg.DUMPED_MODEL)
main_model = f_model(model_path=cfg.DUMPED_MODEL).cpu()
color_model = c_model().cpu()
pooling_model = p_model().cpu()
extractor = FeatureExtractor(main_model, color_model, pooling_model)


def dump_dataset(loader, deep_feats, color_feats, labels):
    for batch_idx, (data, data_path) in enumerate(loader):
        data = Variable(data).cpu()
        deep_feat, color_feat = extractor(data)
        for i in range(len(data_path)):
            path = data_path[i]
            feature_n = deep_feat[i].squeeze()
            color_feature_n = color_feat[i]
            # dump_feature(feature, path)

            deep_feats.append(feature_n)
            color_feats.append(color_feature_n)
            labels.append(path)
コード例 #4
0
# -*- coding: utf-8 -*-

import os
from config import *
from utils import *
from torch.autograd import Variable
from data import Fashion_attr_prediction, Fashion_inshop
from net import f_model, c_model, p_model

main_model = f_model(model_path=DUMPED_MODEL).cuda(GPU_ID)
color_model = c_model().cuda(GPU_ID)
pooling_model = p_model().cuda(GPU_ID)
extractor = FeatureExtractor(main_model, color_model, pooling_model)


def dump_dataset(loader, deep_feats, color_feats, labels):
    for batch_idx, (data, data_path) in enumerate(loader):
        data = Variable(data).cuda(GPU_ID)
        deep_feat, color_feat = extractor(data)
        for i in range(len(data_path)):
            path = data_path[i]
            feature_n = deep_feat[i].squeeze()
            color_feature_n = color_feat[i]
            # dump_feature(feature, path)

            deep_feats.append(feature_n)
            color_feats.append(color_feature_n)
            labels.append(path)

        if batch_idx % LOG_INTERVAL == 0:
            print("{} / {}".format(batch_idx * EXTRACT_BATCH_SIZE,
コード例 #5
0
# -*- coding: utf-8 -*-
import torch
import os
from myconfig import cfg
#from utils import FeatureExtractor,data_transform_test
from utils import *
from torch.autograd import Variable
from data import Fashion_attr_prediction, Fashion_inshop
from net import f_model, c_model, p_model
import numpy as np

print(cfg.DUMPED_MODEL)
main_model = f_model(model_path=cfg.DUMPED_MODEL).cuda(cfg.GPU_ID)
color_model = c_model().cuda(cfg.GPU_ID)
pooling_model = p_model().cuda(cfg.GPU_ID)
extractor = FeatureExtractor(main_model, color_model, pooling_model)


def dump_dataset(loader, deep_feats, color_feats, labels):
    for batch_idx, (data, data_path) in enumerate(loader):
        data = Variable(data).cuda(cfg.GPU_ID)
        deep_feat, color_feat = extractor(data)
        for i in range(len(data_path)):
            path = data_path[i]
            feature_n = deep_feat[i].squeeze()
            color_feature_n = color_feat[i]
            # dump_feature(feature, path)

            deep_feats.append(feature_n)
            color_feats.append(color_feature_n)
            labels.append(path)