コード例 #1
0
ファイル: main.py プロジェクト: zhaoliangzhang/mittos_dnn
def main(mode="test"):
    if (sys.argv[1] == "train"):
        module = net.Mynet()
        train_dataset = data.trainSet("traindata")
        train_loader = torch.utils.data.DataLoader(dataset=train_dataset)
        net.train(10, train_loader, module)
    if (sys.argv[1] == "test"):
        module = torch.load("module/my_model.pkl")
        test_dataset = data.trainSet("traindata")
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset)
        net.test(test_loader, module)
    if (sys.argv[1] == "print"):
        module = torch.load("module/my_model.pkl")
        print(module.state_dict())
コード例 #2
0
    # load CIFAR10 dataset
    cifar10 = tf.keras.datasets.cifar10
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    batch_size = 64
    # change TRAIN to true if you want to create a new model and save it to the ckpt folder
    TRAIN = False
    if TRAIN:
        train(x_train, y_train, batch_size)
    cifar10_test = DatasetIterator(x_test, y_test, batch_size)
    cifar10_test_images, cifar10_test_labels = x_test, y_test

    # start timer
    start = timeit.default_timer()
    np.random.seed(0)
    # get results from test set
    predicted_cifar10_test_labels = test(cifar10_test_images)
    np.random.seed()
    # end timer
    stop = timeit.default_timer()
    run_time = stop - start
    # calculate accuracy
    correct_predict = (cifar10_test_labels.flatten() ==
                       predicted_cifar10_test_labels.flatten()).astype(
                           np.int32).sum()
    incorrect_predict = len(cifar10_test_labels) - correct_predict
    accuracy = float(correct_predict) / len(cifar10_test_labels)
    print('Acc: {}. Testing took {}s.'.format(accuracy, stop - start))

    result = OrderedDict(correct_predict=correct_predict,
                         accuracy=accuracy,
                         run_time=run_time)
コード例 #3
0
from net import test
from eval import evaluation

if __name__ == '__main__':
  # get predicted classes and bboxes from test data in data folder
  # if train = true, a new model will be trained
  # if train = false, the saved model from ckpt will be used on the test set
  pred_class, pred_bboxes = test(train=False)
  # evaluate the model
  evaluation(pred_class, pred_bboxes)
コード例 #4
0
lTrainAcc = []
lTestAcc = []
lF1 = []

for epoch in range(1, 100):
    trainAcc = net.train(model, device, batchTrainingData, optimizer, epoch)
    lTrainAcc.append(trainAcc)
    totalCorrect = 0
    total = 0
    dist = np.zeros((11, 11))
    countTargets = np.zeros((11))
    for batch in batchValidationData:
        data = batch[0].to(device)
        target = batch[1].to(device)
        output = net.test(model, device, data)
        pred = output.max(
            1, keepdim=True)[1]  # get the index of the max log-probability
        target = target.long().view_as(pred)
        totalCorrect += pred.eq(target).sum().item()
        total += len(data)
        for i in range(len(pred)):
            dist[target[i]][pred[i]] += 1
            countTargets[target[i]] += 1
    print("Test accuracy:" + str(100 * totalCorrect / total) + "%")
    print(dist)
    lTestAcc.append(100 * totalCorrect / total)
    lF1.append(stats.F1overall(np.array(dist)))
    print(lTrainAcc)
    print(lTestAcc)
    print(lF1)
コード例 #5
0
    print("Training network...")
    n.train(net,
            optimizer,
            num_epochs,
            batch_size,
            trn_set,
            num_class,
            vld_set=None)

    print('Saving network (pkl)...')
    pickle.dump(net, open("save1.pkl", "wb"))

    #print("Saving network...")
    #n.save_net(net, num_spec_layers = [1, 3], name_n = 'cnn(3_5_2)(0_1_2_8)', active = True )

    print("Testing network...")
    accuracy = n.test(net, tst_set)
    print("Test accuracy: %0.2f%%" % (accuracy * 100 / (len(tst_set))))
    '''
    net_load = n.Loaded_nn(name='save(math1)')
    print("Testing Loaded Network...")
    acc_load = n.test(net_load, tst_set)
    print("Test accuracy of loaded nn: %0.2f%%" % (acc_load*100./(len(tst_set))))
    
    net_tr=pickle.load(open("save.pkl", "rb"))
    print("Testing network...")
    accuracy = n.test(net_tr, tst_set)
    print("Test accuracy: %0.2f%%" % (accuracy*100/(len(tst_set))))
    '''