import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from netCDF4 import Dataset as Ncdf from netCDF4 import num2date from mpl_toolkits.basemap import Basemap import matplotlib from PIL import Image matplotlib.use("Agg") nc = Ncdf('precip_diurnal_mean_d02_2009-2018.nc', 'r') nc55 = Ncdf('precip_diurnal_mean_d02_2055-2064.nc', 'r') for i in nc.variables: print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] rr = nc.variables['rainfall_rate'][:] t_units = nc.variables['time'].units max = -478324 min = 7489324 for j in range(0, 24): print(j) for k in range(0, 699): for d in range(0, 600): if rr[j, k, d] >= max: max = rr[j, k, d] if rr[j, k, d] <= min: min = rr[j, k, d] print(max)
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf import matplotlib.colors as colors from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") ua = Ncdf('ua_10m_diurnal_mean_d02_2009-2018.nc', 'r') va = Ncdf('va_10m_diurnal_mean_d02_2009-2018.nc', 'r') ua55 = Ncdf('ua_10m_diurnal_mean_d02_2055-2064.nc', 'r') va55 = Ncdf('va_10m_diurnal_mean_d02_2055-2064.nc', 'r') ua90 = Ncdf('ua_10m_diurnal_mean_d02_2090-2099.nc', 'r') va90 = Ncdf('va_10m_diurnal_mean_d02_2090-2099.nc', 'r') print(ua55) lons = ua.variables['lon'][:] lats = ua.variables['lat'][:] time = ua.variables['time'][:] u10 = np.array(ua.variables['ua_10m'][:]) v10 = np.array(va.variables['va_10m'][:]) ws = np.sqrt(u10[:] ** 2 + v10[:] ** 2) print("wind speed") print(np.amax(ws)) print(np.amin(ws)) # datevar = num2date(time[:], units='hours since 1970-01-01 00:00:00', calendar='standard') # print(datevar[:]) map = Basemap(projection='merc', llcrnrlon=lons[0], llcrnrlat=lats[0], urcrnrlon=lons[599], urcrnrlat=lats[698],
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date import datetime from mpl_toolkits.basemap import Basemap import matplotlib import palettable matplotlib.use("Agg") nc = Ncdf('ta_2m_diurnal_mean_d02_2009-2018.nc', 'r') nc90 = Ncdf('ta_2m_diurnal_mean_d02_2090-2099.nc', 'r') # for i in nc.variables: # print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] t2 = nc.variables['ta_2m'][:] t_units = nc.variables['time'].units temp_c = t2 lons90 = nc90.variables['lon'][:] lats90 = nc90.variables['lat'][:] time90 = nc90.variables['time'][:] t290 = nc90.variables['ta_2m'][:] t_units90 = nc90.variables['time'].units temp_c90 = t290 diff = t2 max = -43892184 min = 843924 for j in range(0, 24): print(j) for k in range(0, 699):
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('ta_2m_1hr_20090101_d02.nc', 'r') print(nc) for i in nc.variables: print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] t2 = nc.variables['ta_2m'][:] t_units = nc.variables['time'].units add = 0.0 avg = 0 # avg_temps = [] # for i in lons: # for j in lats: # for x in t2[:]: # add += x # if x % 24 == 0: # break # avg_temps.append(add / 24) # add = 0 # print(avg_temps)
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('VPD_monthly_mean_d02_2009-2018.nc', 'r') print(nc) for i in nc.variables: print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] vpd = nc.variables['VPD'][:] t_units = nc.variables['time'].units datevar = num2date(time[:], units='hours since 1970-01-01 00:00:00', calendar='standard') print(datevar[:]) map = Basemap(projection='merc', llcrnrlon=lons[0], llcrnrlat=lats[0], urcrnrlon=lons[599], urcrnrlat=lats[698], resolution='i') lon2, lat2 = np.meshgrid(lons, lats) x, y = map(lon2, lat2)
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('precip_diurnal_mean_d02_2009-2018.nc', 'r') nc90 = Ncdf('precip_diurnal_mean_d02_2090-2099.nc', 'r') for i in nc.variables: print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] rr = nc.variables['rainfall_rate'][:] t_units = nc.variables['time'].units lons90 = nc90.variables['lon'][:] lats90 = nc90.variables['lat'][:] time90 = nc90.variables['time'][:] rr55 = nc90.variables['rainfall_rate'][:] t_units55 = nc90.variables['time'].units diff = rr max = -478324 min = 7489324 for j in range(0, 24): print(j) for k in range(0, 699): for d in range(0, 600): diff[j, k, d] = rr55[j, k, d] - rr[j, k, d] if diff[j, k, d] >= max:
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from netCDF4 import Dataset as Ncdf from mpl_toolkits.basemap import Basemap import matplotlib # CREATE DIRECTORIES /precip_amnt_freq_month_2055_2064_cat0_maps/ for cat0 - cat3 matplotlib.use("Agg") nc = Ncdf('precip_exc_freq_d02_2090-2099.nc', 'r') print(nc) print(nc.variables["category"][:]) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] month = nc.variables['month'][:] precip = nc.variables['precip_amnt_freq_month'][:] cat = nc.variables["category"][:] mapp = Basemap(projection='merc', llcrnrlon=lons[0], llcrnrlat=lats[0], urcrnrlon=lons[599], urcrnrlat=lats[698], resolution='i') lon2, lat2 = np.meshgrid(lons, lats) x, y = mapp(lon2, lat2) plt.figure(figsize=(601 / 100, 700 / 100)) plt.gca().set_axis_off() plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) cmap = plt.get_cmap('gist_rainbow') cmapr = plt.get_cmap('gist_rainbow_r')
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('daily_temperature_month_d02_2009-2018.nc', 'r') nc55 = Ncdf('daily_temperature_month_d02_2055-2064.nc', 'r') month = nc.variables['month'][:] lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] month55 = nc.variables['month'][:] lons55 = nc.variables['lon'][:] lats55 = nc.variables['lat'][:] # temp_max_daily = nc.variables['Tmax_daily'][:] # temp55_max_daily = nc55.variables['Tmax_daily'][:] # temp_min_daily = nc.variables['Tmin_daily'][:] # temp55_min_daily = nc55.variables['Tmin_daily'][:] temp_mean_daily = nc.variables['Tmean_daily'][:] temp55_mean_daily = nc55.variables['Tmean_daily'][:] # temp_min_daily_c = temp_min_daily # temp55_min_daily_c = temp55_min_daily # temp_max_daily_c = temp_max_daily
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from mpl_toolkits.basemap import Basemap import matplotlib from netCDF4 import num2date matplotlib.use("Agg") nc = Ncdf('daily_temperature_month_d02_2009-2018.nc', 'r') n90 = Ncdf('daily_temperature_month_d02_2090-2099.nc', 'r') for i in nc.variables: print(i, nc.variables[i]) for x in n90.variables: print(x, n90.variables[x]) month = nc.variables['month'][:] lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] month90 = nc.variables['month'][:] lons90 = nc.variables['lon'][:] lats90 = nc.variables['lat'][:] datevar = num2date(month[:], units='hours since 1970-01-01 00:00:00', calendar='standard') print(datevar[:]) temp_max_daily = nc.variables['Tmax_daily'][:] temp90_max_daily = n90.variables['Tmax_daily'][:] # temp_min_daily = nc.variables['Tmin_daily'][:]
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from netCDF4 import Dataset as Ncdf from netCDF4 import num2date import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('VPD_monthly_mean_d02_2009-2018.nc', 'r') nc99 = Ncdf('VPD_monthly_mean_d02_2090-2099.nc', 'r') print(nc) for i in nc.variables: print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] vpd = nc.variables['VPD'][:] lons99 = nc99.variables['lon'][:] lats99 = nc99.variables['lat'][:] time99 = nc99.variables['time'][:] vpd99 = nc99.variables['VPD'][:] diff99 = vpd99 for j in range(0, 12): print(j) for k in range(0, 699): for d in range(0, 600):
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from netCDF4 import Dataset as Ncdf from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('precip_exc_freq_d02_2009-2018.nc', 'r') nc55 = Ncdf('precip_exc_freq_d02_2055-2064.nc', 'r') nc90 = Ncdf('precip_exc_freq_d02_2090-2099.nc', 'r') print(nc) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] month = nc.variables['month'][:] mean = nc.variables['mean_daily_precip'][:] lons55 = nc55.variables['lon'][:] lats55 = nc55.variables['lat'][:] month55 = nc55.variables['month'][:] mean55 = nc55.variables['mean_daily_precip'][:] diff55 = mean55 lons90 = nc90.variables['lon'][:] lats90 = nc90.variables['lat'][:] month90 = nc90.variables['month'][:] mean90 = nc90.variables['mean_daily_precip'][:] diff90 = mean90 for j in range(0, 12): print(j) for k in range(0, 699): for d in range(0, 600): diff55[j, k, d] = mean55[j, k, d] - mean[j, k, d]
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('daily_temperature_month_d02_2055-2064.nc', 'r') print(nc) month = nc.variables['month'][:] lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] # time = nc.variables['time'][:] # t_units = nc.variables['time'].units temp_max_daily = nc.variables['Tmax_daily'][:] # temp_min_daily = nc.variables['Tmin_daily'][:] # temp_mean_daily = nc.variables['Tmean_daily'][:] temp_max_daily_c = temp_max_daily # temp_min_daily_c = temp_min_daily # temp_mean_daily_c = temp_mean_daily for i in range(0, 12): print(i) for j in range(0, 699): for k in range(0, 600): temp_max_daily_c[i, j, k] = temp_max_daily[i, j, k] - 273.15
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from netCDF4 import Dataset as Ncdf from mpl_toolkits.basemap import Basemap import matplotlib # CREATE DIRECTORIES /precip_amnt_freq_month_2055_2064_cat0_maps/ for cat0 - cat3 matplotlib.use("Agg") nc = Ncdf('precip_exc_freq_d02_2055-2064.nc', 'r') print(nc) print(nc.variables["category"][:]) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] month = nc.variables['month'][:] precip = nc.variables['precip_amnt_freq_month'][:] cat = nc.variables["category"][:] mapp = Basemap(projection='merc', llcrnrlon=lons[0], llcrnrlat=lats[0], urcrnrlon=lons[599], urcrnrlat=lats[698], resolution='i') lon2, lat2 = np.meshgrid(lons, lats) x, y = mapp(lon2, lat2) plt.figure(figsize=(601 / 100, 700 / 100)) plt.gca().set_axis_off() plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) cmap = plt.get_cmap('gist_rainbow') cmapr = plt.get_cmap('gist_rainbow_r')
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date, date2num import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('ta_2m_1hr_20090101_d02.nc', 'r') #print(nc) # for i in nc.variables: # print(i, nc.variables[i].units, nc.variables[i].shape) # print(nc.dimensions) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] t2 = nc.variables['ta_2m'][:] t_units = nc.variables['time'].units datevar = num2date(time[:], units='hours since 1970-01-01 00:00:00', calendar='standard') another = Ncdf("ta_max_1day.nc", "w", format="NETCDF4") temp_dim = another.createDimension("max temp") day_dim = another.createDimension("days in jan") lat_dim = another.createDimension("lat") lon_dim = another.createDimension("lon") temp = another.createVariable("max temp", 'f4', ("max temp", )) day = another.createVariable("day", "u1", ("days in jan", )) another_latitude = another.createVariable("lat", 'f4', ("lon", )) another_longitude = another.createVariable("lon", 'f4', ("lat", ))
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date, date2num import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") max = Ncdf("ta_max_1day.nc", "r") print(max) max_latitude = max.variables["lat"][:] max_longitude = max.variables["lon"][:] max_temps = max.variables["max temp"][:] days = max.variables["day"][:] datevar = num2date(days[:], units='hours since 1970-01-01 00:00:00', calendar='standard') avg = 0 for j in range(0, 599): for k in range(0, 698): for d in range(0, len(days[:])): avg += max_temps[:][d][k][j] if j % 25 == 0 & k % 25 == 0: domain = [] fig = plt.figure() ax = plt.axes() ax.plot(datevar, avg) plt.show() max.close() print("done")
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('ta_2m_diurnal_mean_d02_2009-2018.nc', 'r') nc55 = Ncdf('ta_2m_diurnal_mean_d02_2055-2064.nc', 'r') # for i in nc.variables: # print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] t2 = nc.variables['ta_2m'][:] t_units = nc.variables['time'].units temp_c = t2 lons55 = nc55.variables['lon'][:] lats55 = nc55.variables['lat'][:] time55 = nc55.variables['time'][:] t255 = nc55.variables['ta_2m'][:] t_units55 = nc55.variables['time'].units temp_c55 = t255 diff = t2 max = -478324 min = 7489324 # for j in range(0, 24): # print(j) # for k in range(0, 699): # for d in range(0, 600):
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from netCDF4 import Dataset as Ncdf from netCDF4 import num2date import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('qv_2m_monthly_mean_d02_2009-2018.nc', 'r') nc55 = Ncdf('qv_2m_monthly_mean_d02_2090-2099.nc', 'r') print(nc) for i in nc.variables: print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] qv2m = nc.variables['qv_2m'][:] lons55 = nc55.variables['lon'][:] lats55 = nc55.variables['lat'][:] time55 = nc55.variables['time'][:] qv2m55 = nc55.variables['qv_2m'][:] diff55 = qv2m55 for j in range(0, 12): print(j) for k in range(0, 699): for d in range(0, 600):
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from netCDF4 import Dataset as Ncdf from netCDF4 import num2date import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('VPD_monthly_mean_d02_2009-2018.nc', 'r') nc55 = Ncdf('VPD_monthly_mean_d02_2055-2064.nc', 'r') print(nc) for i in nc.variables: print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] vpd = nc.variables['VPD'][:] lons55 = nc55.variables['lon'][:] lats55 = nc55.variables['lat'][:] time55 = nc55.variables['time'][:] vpd55 = nc55.variables['VPD'][:] diff55 = vpd55 for j in range(0, 12): print(j) for k in range(0, 699): for d in range(0, 600):
import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset as Ncdf from netCDF4 import num2date import datetime from mpl_toolkits.basemap import Basemap import matplotlib matplotlib.use("Agg") nc = Ncdf('qv_2m_monthly_mean_d02_2009-2018.nc', 'r') print(nc) for i in nc.variables: print(i, nc.variables[i].units, nc.variables[i].shape) lons = nc.variables['lon'][:] lats = nc.variables['lat'][:] time = nc.variables['time'][:] qv2m = nc.variables['qv_2m'][:] t_units = nc.variables['time'].units datevar = num2date(time[:], units='hours since 1970-01-01 00:00:00', calendar='standard') print(datevar[:]) map = Basemap(projection='merc', llcrnrlon=lons[0], llcrnrlat=lats[0], urcrnrlon=lons[599], urcrnrlat=lats[698], resolution='i') lon2, lat2 = np.meshgrid(lons, lats) x, y = map(lon2, lat2) my_cmap = plt.get_cmap('rainbow') plt.gca().set_axis_off() plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) map.pcolormesh(x, y, qv2m[0, :, :], cmap='rainbow_r')