コード例 #1
0
def inputs(file_names, config_params):

	[xdata,ydata] = netcdf_read_write.read_grd_xy(file_names[0]);
	data_all=[];
	date_pairs=[];
	dates=[];
	start_dt = dt.datetime.strptime(str(config_params.start_time),"%Y%m%d");
	end_dt = dt.datetime.strptime(str(config_params.end_time),"%Y%m%d");

	for ifile in file_names:  # this happens to be in date order on my mac
		pairname=ifile.split('/')[-1][0:15];
		image1=pairname.split('_')[0];
		image2=pairname.split('_')[1];
		image1_dt = dt.datetime.strptime(image1,"%Y%j");
		image2_dt = dt.datetime.strptime(image2,"%Y%j");
		if image1_dt>=start_dt and image1_dt<= end_dt:
			if image2_dt>=start_dt and image2_dt <= end_dt:
				data = netcdf_read_write.read_grd(ifile);
				data_all.append(data);
				date_pairs.append(pairname);  # returning something like '2016292_2016316' for each intf
				dates.append(image1);
				dates.append(image2);
	dates=list(set(dates));
	dates=sorted(dates);
	print(dates);
	print("Reading %d interferograms from %d acquisitions. " % (len(date_pairs), len(dates) ) );
	return [xdata, ydata, data_all, dates, date_pairs];
コード例 #2
0
def inputs(file_names, skip_file):
    try:
        [xdata, ydata] = netcdf_read_write.read_grd_xy(file_names[0])
        # can read either netcdf3 or netcdf4.
    except TypeError:
        [xdata, ydata, _] = netcdf_read_write.read_netcdf4_xyz(file_names[0])
    data_all = []
    date_pairs = []

    file_names = sorted(file_names)
    # To force into date-ascending order.

    for ifile in file_names:  # Read the data
        try:
            data = netcdf_read_write.read_grd(ifile)
        except TypeError:
            [_, _, data] = netcdf_read_write.read_netcdf4_xyz(ifile)
        data_all.append(data)
        pairname = ifile.split('/')[-2][0:15]
        date_pairs.append(pairname)
        # returning something like '2016292_2016316' for each intf
        print(pairname)

    skip_intfs = []
    if skip_file is not None:
        ifile = open(skip_file, 'r')
        for line in ifile:
            skip_intfs.append(line.split()[0])
        ifile.close()

    return [xdata, ydata, data_all, date_pairs, skip_intfs]
コード例 #3
0
ファイル: aps.py プロジェクト: cherishing99/S1_batches
def inputs(file_names, start_time, end_time, run_type):

    # Read the input grd files. Support for netcdf3 and netcdf4.
    try:
        [xdata, ydata] = netcdf_read_write.read_grd_xy(file_names[0])
    except TypeError:
        [xdata, ydata, _] = netcdf_read_write.read_netcdf4_xyz(file_names[0])

    data_all = []
    date_pairs = []
    dates = []
    start_dt = dt.datetime.strptime(str(start_time), "%Y%m%d")
    end_dt = dt.datetime.strptime(str(end_time), "%Y%m%d")

    # Get the dates of the acquisitions from the file names.
    for ifile in file_names:  # this happens to be in date order on my mac
        if run_type == 'test':  # testing with Kang's format. "20171117_20171123/unwrap_new.grd"
            pairname = ifile.split('/')[-2]
            image1 = pairname.split('_')[0]
            image2 = pairname.split('_')[1]
            image1_dt = dt.datetime.strptime(image1, "%Y%m%d")
            image2_dt = dt.datetime.strptime(image2, "%Y%m%d")
        else:  #  the usual GMTSAR format
            pairname = ifile.split('/')[-1][0:15]
            image1 = pairname.split('_')[0]
            image2 = pairname.split('_')[1]
            image1_dt = dt.datetime.strptime(image1, "%Y%j")
            image2_dt = dt.datetime.strptime(image2, "%Y%j")

        if image1_dt >= start_dt and image1_dt <= end_dt:
            if image2_dt >= start_dt and image2_dt <= end_dt:
                try:
                    data = netcdf_read_write.read_grd(ifile)
                except TypeError:
                    [_, _, data] = netcdf_read_write.read_netcdf4_xyz(ifile)
                if run_type == "test":
                    data_all.append(data * -0.0555 / 4 / np.pi)
                    # mcandis preprocessing involves changing to LOS distances.
                    print(
                        "Converting phase to LOS (mm) with 55.5mm wavelength")
                else:
                    data_all.append(data)
                pairname = dt.datetime.strftime(
                    image1_dt, "%Y%j") + '_' + dt.datetime.strftime(
                        image2_dt, "%Y%j")
                date_pairs.append(pairname)
                # returning something like '2016292_2016316' for each intf
                dates.append(dt.datetime.strftime(image1_dt, "%Y%j"))
                dates.append(dt.datetime.strftime(image2_dt, "%Y%j"))

    data_all = np.array(data_all)
    # this allows easy indexing later on.
    dates = list(set(dates))
    dates = sorted(dates)
    print(date_pairs)
    print("Reading %d interferograms from %d acquisitions. " %
          (len(date_pairs), len(dates)))

    return [xdata, ydata, data_all, dates, date_pairs]
コード例 #4
0
ファイル: corr_hist.py プロジェクト: bingo456/S1_batches
def inputs(file_names):
    [xdata, ydata] = netcdf_read_write.read_grd_xy(file_names[0])
    data_all = []
    for ifile in file_names:  # this happens to be in date order on my mac
        data = netcdf_read_write.read_grd(ifile)
        data_all.append(data)
    date_pairs = []
    for name in file_names:
        pairname = name.split('/')[-2][0:15]
        date_pairs.append(pairname)
        # returning something like '2016292_2016316' for each intf
        print(pairname)
    return [xdata, ydata, data_all, date_pairs]
コード例 #5
0
def readGRD(file_type):
    # Read in SAR data from .grd formatted file
    # INPUT FILES MUST BE LOCATED IN A GMTSAR DIRECTORY!
    # Path_list format:
    #   20170426_20170520/corr.grd
    #   20170426_20170601/corr.grd
    #   20170426_20170613/corr.grd
    #   ...

    # Get list of file paths
    path_list = glob.glob("*/" + file_type)

    print('Number of files to read: ' + str(len(path_list)))
    # Establish tuple
    tupleGRD = collections.namedtuple('GRD_data',
                                      ['path_list', 'xdata', 'ydata', 'zdata'])

    # Get dimensional data
    try:
        [xdata, ydata] = netcdf_read_write.read_grd_xy(
            path_list[0])  # can read either netcdf3 or netcdf4.
    except TypeError:
        [xdata, ydata] = netcdf_read_write.read_netcdf4_xy(path_list[0])

    # Loop through path_list to read in target datafiles
    zdata = []
    date_pairs = []
    i = 0
    for file in path_list:
        try:
            data = netcdf_read_write.read_grd(file)
        except TypeError:
            data = netcdf_read_write.read_netcdf4(file)

        zdata.append(data)
        pairname = file.split('/')[-2][0:19]
        date_pairs.append(
            pairname
        )  # returning something like '2016292_2016316' for each intf

        if i == floor(len(path_list) / 2):
            print('Halfway done reading...')

    myData = tupleGRD(path_list=np.array(path_list),
                      xdata=np.array(xdata),
                      ydata=np.array(ydata),
                      zdata=np.array(zdata))

    return myData
コード例 #6
0
def reader_simple_format(file_names):
    """
    An earlier reading function, works fast, useful for things like coherence statistics
    """
    [xdata, ydata] = rwr.read_grd_xy(file_names[0]);
    data_all = [];
    for ifile in file_names:  # this happens to be in date order on my mac
        data = rwr.read_grd(ifile);
        data_all.append(data);
    date_pairs = [];
    for name in file_names:
        pairname = name.split('/')[-2][0:15];
        date_pairs.append(pairname);  # returning something like '2016292_2016316' for each intf
        print(pairname)
    return [xdata, ydata, data_all, date_pairs];
コード例 #7
0
def inputs(file_names):
	[xdata,ydata] = netcdf_read_write.read_grd_xy(file_names[0]);
	data_all=[];
	for ifile in file_names:  # this happens to be in date order on my mac
		data = netcdf_read_write.read_grd(ifile);
		data_all.append(data);
	date_pairs=[];
	dates=[];
	for name in file_names:
		pairname=name.split('/')[-1][0:15];
		date_pairs.append(pairname);  # returning something like '2016292_2016316' for each intf
		splitname=pairname.split('_');
		dates.append(splitname[0])
		dates.append(splitname[1])
	dates=list(set(dates));
	dates=sorted(dates);
	print(dates);
	print("%d interferograms read from %d acquisitions." % (len(date_pairs), len(dates)) );
	return [xdata, ydata, data_all, dates, date_pairs];
コード例 #8
0
def inputs(file_names):
    try:
        [xdata, ydata] = netcdf_read_write.read_grd_xy(
            file_names[0])  # can read either netcdf3 or netcdf4.
    except TypeError:
        [xdata, ydata] = netcdf_read_write.read_netcdf4_xy(file_names[0])
    data_all = []

    file_names = sorted(file_names)  # To force into date-ascending order.

    titles = []

    for ifile in file_names:  # Read the data
        try:
            data = netcdf_read_write.read_grd(ifile)
        except TypeError:
            data = netcdf_read_write.read_netcdf4(ifile)
        data_all.append(data)
        # LOS_20161121_INT3.grd
        titles.append(ifile[-17:-9])

    return [xdata, ydata, data_all, titles]
コード例 #9
0
def main_function():

	# GLOBAL PARAMETERS
	nfit=0
	ivar=1
	alt_ref=100
	thresh_amp=0.2
	subsampled_dem_grd="topo/topo_ra_subsampled_june.grd"  # subsampled in the same way as the intf grd files. 
	demfile="topo/topo_radar.hgt"
	example_rsc="rsc_files/example_sd.int.rsc"

	# INPUTS
	intf_list=glob.glob("intf_all/???????_???????");
	print(intf_list);

	# [width, length] = readbin.write_gmtsar2roipac_topo(subsampled_dem_grd,demfile);  # copying the demfile into roipac format just in case we've switched the master. 

	# COMPUTE
	for data_dir in intf_list:
		print(data_dir);
		intf_name=data_dir.split('/')[1];
		infile=data_dir+"/intf_sd.int";
		infile_filtered=data_dir+"/intf_filt.int";
		stratfile=data_dir+"/strat.unw"
		outfile=data_dir+"/out.int"
		outfile_filtered=data_dir+"/out_filtered.int"

		# Pretty standard GMTSAR files. 
		phasefile=data_dir+"/phase.grd";
		phasefilt_file=data_dir+"/phasefilt.grd";
		ampfile=data_dir+"/amp.grd";
		orig_phasefile=data_dir+"/orig_phase.grd";
		orig_phasefilt_file=data_dir+"/orig_phasefilt.grd";

		readbin.prep_files(phasefile, phasefilt_file, orig_phasefile, orig_phasefilt_file);  # copy files into safekeeping if necessary

		# MAKE BINARY INTERFEROGRAMS
		[width, length] = readbin.write_gmtsar2roipac_phase(data_dir,orig_phasefile, orig_phasefilt_file, ampfile,infile,infile_filtered);
		# width=661; length=1524

		# # # RUN THE FORTRAN
		print("\nRunning the fortran code to remove atmospheric artifacts from interferogram.")
		subprocess.call(['cp',example_rsc,data_dir+'/intf_sd.int.rsc'],shell=False);
		print("flatten_topo "+infile+" "+infile_filtered+" "+demfile+" "+outfile+" "+outfile_filtered+" "+str(nfit)+" "+str(ivar)+" "+str(alt_ref)+" "+str(thresh_amp)+" "+stratfile+"\n");
		subprocess.call(["flatten_topo",infile,infile_filtered,demfile,outfile,outfile_filtered,str(nfit),str(ivar),str(alt_ref),str(thresh_amp),stratfile],shell=False);
		subprocess.call(['mv','ncycle_topo',data_dir+'/ncycle_topo'],shell=False);
		subprocess.call(['mv','ncycle_topo_az',data_dir+'/ncycle_topo_az'],shell=False);

		# Output handling. First reading 1D arrays
		[real,imag]=readbin.read_binary_roipac_real_imag(infile);
		[phase_early,amp_early]=readbin.real_imag2phase_amp(real,imag); 
		[real,imag]=readbin.read_binary_roipac_real_imag(outfile);
		[phase_out,amp_late]=readbin.real_imag2phase_amp(real,imag);
		[real,imag]=readbin.read_binary_roipac_real_imag(outfile_filtered);
		[phasefilt_out,amp_late]=readbin.real_imag2phase_amp(real,imag);  # 1d arrays


		# # Write the GRD files , fixing an issue with pixel node registration. 
		[xdata_p,ydata_p]=netcdf_read_write.read_grd_xy(orig_phasefile);
		[xdata_pf,ydata_pf]=netcdf_read_write.read_grd_xy(orig_phasefilt_file);
		phase_out_grd=np.reshape(phase_out,(length,width));
		phasefilt_out_grd=np.reshape(phasefilt_out,(length,width));
		
		netcdf_read_write.produce_output_netcdf(xdata_p, ydata_p, phase_out_grd, 'radians', phasefile);
		netcdf_read_write.flip_if_necessary(phasefile);
		origrange=subprocess.check_output('gmt grdinfo -I- '+orig_phasefile,shell=True);   # fixing pixel node registration issue. 
		subprocess.call('gmt grdsample '+phasefile+' '+origrange.split()[0]+' -G'+phasefile+' -r', shell=True);

		netcdf_read_write.produce_output_netcdf(xdata_pf, ydata_pf, phasefilt_out_grd, 'radians', phasefilt_file);
		netcdf_read_write.flip_if_necessary(phasefilt_file);
		origrange=subprocess.check_output('gmt grdinfo -I- '+orig_phasefilt_file,shell=True);
		subprocess.call('gmt grdsample '+phasefilt_file+' '+origrange.split()[0]+' -G'+phasefilt_file+' -r', shell=True);

		# Making plot
		readbin.output_plots(phase_early, phasefilt_out, width, length, data_dir+"/"+intf_name+"_corrected.eps");

	return;