コード例 #1
0
    def __init__(self, pthdir, layers=None, device=None, dissectdir=None):

        os.makedirs(pthdir, exist_ok=True)

        self.device = device if device is not None else torch.device('cpu')
        self.dissectdir = dissectdir if dissectdir is not None else (
            os.path.join(pthdir, 'dissect'))
        self.modellock = threading.Lock()

        # Load the generator from the pth file. If the file is not there, download
        path_gan_checkpoint = os.path.join(pthdir, 'generator.pth')
        if not os.path.isfile(path_gan_checkpoint):
            wget.download(
                'http://wednesday.csail.mit.edu/gaze/ganclevr/files/generator.pth',
                out=path_gan_checkpoint)
        model = proggan.from_pth_file(
            path_gan_checkpoint,
            map_location=lambda storage, location: storage)
        model.eval()
        self.model = model

        # Get the set of layers of interest.
        # Default: all shallow children except last.
        if layers is None:
            layers = [name for name, module in model.named_children()][:-1]
        self.layers = layers

        # Modify model to instrument the given layers
        retain_layers(model, layers)
        edit_layers(model, layers)

        # Move it to CUDA if wanted.
        model.to(device)

        # Determine z dimension.
        self.z_dimension = [
            c for c in model.modules() if isinstance(c, torch.nn.Conv2d)
        ][0].in_channels

        # Run the model on one sample input to determine output image size as well as feature size of every layer
        z = torch.randn(self.z_dimension)[None, :, None, None].to(device)
        output = model(z)
        self.image_shape = output.shape[2:]
        self.layer_shape = {
            layer: tuple(model.retained[layer].shape)
            for layer in layers
        }

        for param in self.model.parameters():
            param.requires_grad = False
コード例 #2
0
def create_instrumented_model(args, **kwargs):
    '''
    Creates an instrumented model out of a namespace of arguments that
    correspond to ArgumentParser command-line args:
      model: a string to evaluate as a constructor for the model.
      pthfile: (optional) filename of .pth file for the model.
      layers: a list of layers to instrument, defaulted if not provided.
      edit: True to instrument the layers for editing.
      gen: True for a generator model.  One-pixel input assumed.
      imgsize: For non-generator models, (y, x) dimensions for RGB input.
      cuda: True to use CUDA.
  
    The constructed model will be decorated with the following attributes:
      input_shape: (usually 4d) tensor shape for single-image input.
      output_shape: 4d tensor shape for output.
      feature_shape: map of layer names to 4d tensor shape for featuremaps.
      retained: map of layernames to tensors, filled after every evaluation.
      ablation: if editing, map of layernames to [0..1] alpha values to fill.
      replacement: if editing, map of layernames to values to fill.

    When editing, the feature value x will be replaced by:
        `x = (replacement * ablation) + (x * (1 - ablation))`
    '''

    args = EasyDict(vars(args), **kwargs)

    # Construct the network
    if args.model is None:
        print_progress('No model specified')
        return None
    if isinstance(args.model, torch.nn.Module):
        model = args.model
    else:
        model = autoimport_eval(args.model)
    # Unwrap any DataParallel-wrapped model
    if isinstance(model, torch.nn.DataParallel):
        model = next(model.children())

    # Load its state dict
    meta = {}
    if getattr(args, 'pthfile', None) is not None:
        data = torch.load(args.pthfile)
        if 'state_dict' in data:
            meta = {}
            for key in data:
                if isinstance(data[key], numbers.Number):
                    meta[key] = data[key]
            data = data['state_dict']
        model.load_state_dict(data)
    model.meta = meta

    # Decide which layers to instrument.
    if getattr(args, 'layer', None) is not None:
        args.layers = [args.layer]
    if getattr(args, 'layers', None) is None:
        # Skip wrappers with only one named model
        container = model
        prefix = ''
        while len(list(container.named_children())) == 1:
            name, container = next(container.named_children())
            prefix += name + '.'
        # Default to all nontrivial top-level layers except last.
        args.layers = [
            prefix + name for name, module in container.named_children()
            if type(module).__module__ not in [
                # Skip ReLU and other activations.
                'torch.nn.modules.activation',
                # Skip pooling layers.
                'torch.nn.modules.pooling'
            ]
        ][:-1]
        print_progress('Defaulting to layers: %s' % ' '.join(args.layers))

    # Instrument the layers.
    retain_layers(model, args.layers)
    if getattr(args, 'edit', False):
        edit_layers(model, args.layers)
    model.eval()
    if args.cuda:
        model.cuda()

    # Annotate input, output, and feature shapes
    annotate_model_shapes(model,
                          gen=getattr(args, 'gen', False),
                          imgsize=getattr(args, 'imgsize', None))
    return model
コード例 #3
0
def main():
    parser = argparse.ArgumentParser(description='GAN sample making utility')
    parser.add_argument('--model', type=str, default=None,
            help='constructor for the model to test')
    parser.add_argument('--pthfile', type=str, default=None,
            help='filename of .pth file for the model')
    parser.add_argument('--outdir', type=str, default='images',
            help='directory for image output')
    parser.add_argument('--size', type=int, default=100,
            help='number of images to output')
    parser.add_argument('--test_size', type=int, default=None,
            help='number of images to test')
    parser.add_argument('--layer', type=str, default=None,
            help='layer to inspect')
    parser.add_argument('--seed', type=int, default=1,
            help='seed')
    parser.add_argument('--maximize_units', type=int, nargs='+', default=None,
            help='units to maximize')
    parser.add_argument('--ablate_units', type=int, nargs='+', default=None,
            help='units to ablate')
    parser.add_argument('--quiet', action='store_true', default=False,
            help='silences console output')
    if len(sys.argv) == 1:
        parser.print_usage(sys.stderr)
        sys.exit(1)
    args = parser.parse_args()
    verbose_progress(not args.quiet)

    # Instantiate the model
    model = autoimport_eval(args.model)
    if args.pthfile is not None:
        data = torch.load(args.pthfile)
        if 'state_dict' in data:
            meta = {}
            for key in data:
                if isinstance(data[key], numbers.Number):
                    meta[key] = data[key]
            data = data['state_dict']
        model.load_state_dict(data)
    # Unwrap any DataParallel-wrapped model
    if isinstance(model, torch.nn.DataParallel):
        model = next(model.children())
    # Examine first conv in model to determine input feature size.
    first_layer = [c for c in model.modules()
            if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d,
                torch.nn.Linear))][0]
    # 4d input if convolutional, 2d input if first layer is linear.
    if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
        z_channels = first_layer.in_channels
        spatialdims = (1, 1)
    else:
        z_channels = first_layer.in_features
        spatialdims = ()
    # Instrument the model if needed
    if args.maximize_units is not None:
        retain_layers(model, [args.layer])
    model.cuda()

    # Get the sample of z vectors
    if args.maximize_units is None:
        indexes = torch.arange(args.size)
        z_sample = standard_z_sample(args.size, z_channels, seed=args.seed)
        z_sample = z_sample.view(tuple(z_sample.shape) + spatialdims)
    else:
        # By default, if maximizing units, get a 'top 5%' sample.
        if args.test_size is None:
            args.test_size = args.size * 20
        z_universe = standard_z_sample(args.test_size, z_channels,
                seed=args.seed)
        z_universe = z_universe.view(tuple(z_universe.shape) + spatialdims)
        indexes = get_highest_znums(model, z_universe, args.maximize_units,
                args.size, seed=args.seed)
        z_sample = z_universe[indexes]

    if args.ablate_units:
        edit_layers(model, [args.layer])
        dims = max(2, max(args.ablate_units) + 1) # >=2 to avoid broadcast
        model.ablation[args.layer] = torch.zeros(dims)
        model.ablation[args.layer][args.ablate_units] = 1

    save_znum_images(args.outdir, model, z_sample, indexes,
            args.layer, args.ablate_units)
    copy_lightbox_to(args.outdir)
コード例 #4
0
def main():
    # Training settings
    def strpair(arg):
        p = tuple(arg.split(':'))
        if len(p) == 1:
            p = p + p
        return p

    parser = argparse.ArgumentParser(
        description='Net dissect utility',
        epilog=textwrap.dedent(help_epilog),
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument('--model',
                        type=str,
                        default=None,
                        help='constructor for the model to test')
    parser.add_argument('--pthfile',
                        type=str,
                        default=None,
                        help='filename of .pth file for the model')
    parser.add_argument('--outdir',
                        type=str,
                        default='dissect',
                        help='directory for dissection output')
    parser.add_argument('--layers',
                        type=strpair,
                        nargs='+',
                        help='space-separated list of layer names to edit' +
                        ', in the form layername[:reportedname]')
    parser.add_argument('--classes',
                        type=str,
                        nargs='+',
                        help='space-separated list of class names to ablate')
    parser.add_argument('--metric',
                        type=str,
                        default='iou',
                        help='ordering metric for selecting units')
    parser.add_argument('--startcount',
                        type=int,
                        default=1,
                        help='number of units to ablate')
    parser.add_argument('--unitcount',
                        type=int,
                        default=30,
                        help='number of units to ablate')
    parser.add_argument('--segmenter',
                        type=str,
                        default='dataset/broden',
                        help='directory containing segmentation dataset')
    parser.add_argument('--netname',
                        type=str,
                        default=None,
                        help='name for network in generated reports')
    parser.add_argument('--batch_size',
                        type=int,
                        default=5,
                        help='batch size for forward pass')
    parser.add_argument('--size',
                        type=int,
                        default=1000,
                        help='number of images to test')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA usage')
    parser.add_argument('--quiet',
                        action='store_true',
                        default=False,
                        help='silences console output')
    if len(sys.argv) == 1:
        parser.print_usage(sys.stderr)
        sys.exit(1)
    args = parser.parse_args()

    # Set up console output
    verbose_progress(not args.quiet)

    # Speed up pytorch
    torch.backends.cudnn.benchmark = True

    # Construct the network
    if args.model is None:
        print_progress('No model specified')
        sys.exit(1)

    # Set up CUDA
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    if args.cuda:
        torch.backends.cudnn.benchmark = True

    model = autoimport_eval(args.model)
    # Unwrap any DataParallel-wrapped model
    if isinstance(model, torch.nn.DataParallel):
        model = next(model.children())

    # Load its state dict
    meta = {}
    if args.pthfile is None:
        print_progress('Dissecting model without pth file.')
    else:
        data = torch.load(args.pthfile)
        if 'state_dict' in data:
            meta = {}
            for key in data:
                if isinstance(data[key], numbers.Number):
                    meta[key] = data[key]
            data = data['state_dict']
        model.load_state_dict(data)

    # Instrument it and prepare it for eval
    if not args.layers:
        # Skip wrappers with only one named modele
        container = model
        prefix = ''
        while len(list(container.named_children())) == 1:
            name, container = next(container.named_children())
            prefix += name + '.'
        # Default to all nontrivial top-level layers except last.
        args.layers = [
            prefix + name for name, module in container.named_children()
            if type(module).__module__ not in [
                # Skip ReLU and other activations.
                'torch.nn.modules.activation',
                # Skip pooling layers.
                'torch.nn.modules.pooling'
            ]
        ][:-1]
        print_progress('Defaulting to layers: %s' % ' '.join(args.layers))
    edit_layers(model, args.layers)
    model.eval()
    if args.cuda:
        model.cuda()

    # Set up the output directory, verify write access
    if args.outdir is None:
        args.outdir = os.path.join('dissect', type(model).__name__)
        print_progress('Writing output into %s.' % args.outdir)
    os.makedirs(args.outdir, exist_ok=True)
    train_dataset = None

    # Examine first conv in model to determine input feature size.
    first_layer = [
        c for c in model.modules()
        if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d,
                          torch.nn.Linear))
    ][0]
    # 4d input if convolutional, 2d input if first layer is linear.
    if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
        sample = standard_z_sample(args.size,
                                   first_layer.in_channels)[:, :, None, None]
        train_sample = standard_z_sample(args.size,
                                         first_layer.in_channels,
                                         seed=2)[:, :, None, None]
    else:
        sample = standard_z_sample(args.size, first_layer.in_features)
        train_sample = standard_z_sample(args.size,
                                         first_layer.in_features,
                                         seed=2)
    dataset = TensorDataset(sample)
    train_dataset = TensorDataset(train_sample)
    recovery = autoimport_eval(args.segmenter)

    # Now do the actual work.
    device = next(model.parameters()).device
    labelnames, catnames = (recovery.get_label_and_category_names(dataset))
    label_category = [catnames.index(c) for l, c in labelnames]
    labelnum_from_name = {n[0]: i for i, n in enumerate(labelnames)}

    segloader = torch.utils.data.DataLoader(dataset,
                                            batch_size=args.batch_size,
                                            num_workers=10,
                                            pin_memory=(device.type == 'cuda'))

    with open(os.path.join(args.outdir, 'dissect.json'), 'r') as f:
        dissect = EasyDict(json.load(f))

    # Index the dissection layers by layer name.
    dissect_layer = {lrec.layer: lrec for lrec in dissect.layers}

    # First, collect a baseline
    for l in model.ablation:
        model.ablation[l] = None
    baseline = count_segments(recovery, segloader, model)

    # For each sort-order, do an ablation
    progress = default_progress()
    for classname in progress(args.classes):
        post_progress(c=classname)
        for layername in progress(model.ablation):
            post_progress(l=layername)
            rankname = '%s-%s' % (classname, args.metric)
            measurements = {}
            classnum = labelnum_from_name[classname]
            try:
                ranking = next(r for r in dissect_layer[layername].rankings
                               if r.name == rankname)
            except:
                print('%s not found' % rankname)
                sys.exit(1)
            ordering = numpy.argsort(ranking.score)
            # Check if already done
            ablationdir = os.path.join(args.outdir, layername, 'ablation')
            if os.path.isfile(os.path.join(ablationdir, '%s.json' % rankname)):
                with open(os.path.join(ablationdir,
                                       '%s.json' % rankname)) as f:
                    data = EasyDict(json.load(f))
                # If the unit ordering is not the same, something is wrong
                if not all(a == o
                           for a, o in zip(data.ablation_units, ordering)):
                    import pdb
                    pdb.set_trace()
                    continue
                if len(data.ablation_effects) >= args.unitcount:
                    continue  # file already done.
                measurements = data.ablation_effects
            for count in progress(range(args.startcount,
                                        min(args.unitcount, len(ordering)) +
                                        1),
                                  desc='units'):
                if str(count) in measurements:
                    continue
                ablation = numpy.zeros(len(ranking.score), dtype='float32')
                ablation[ordering[:count]] = 1
                for l in model.ablation:
                    model.ablation[l] = ablation if layername == l else None
                m = count_segments(recovery, segloader, model)[classnum].item()
                print_progress(
                    '%s %s %d units (#%d), %g -> %g' %
                    (layername, rankname, count, ordering[count - 1].item(),
                     baseline[classnum].item(), m))
                measurements[str(count)] = m
            os.makedirs(ablationdir, exist_ok=True)
            with open(os.path.join(ablationdir, '%s.json' % rankname),
                      'w') as f:
                json.dump(
                    dict(classname=classname,
                         classnum=classnum,
                         baseline=baseline[classnum].item(),
                         layer=layername,
                         metric=args.metric,
                         ablation_units=ordering.tolist(),
                         ablation_effects=measurements), f)