def test_dissection(): verbose_progress(True) from torchvision.models import alexnet from torchvision import transforms model = alexnet(pretrained=True) model.eval() # Load an alexnet retain_layers(model, [('features.0', 'conv1'), ('features.3', 'conv2'), ('features.6', 'conv3'), ('features.8', 'conv4'), ('features.10', 'conv5')]) # load broden dataset bds = BrodenDataset('dataset/broden', transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV) ]), size=100) # run dissect dissect('dissect/test', model, bds, examples_per_unit=10)
def main(): # Training settings def strpair(arg): p = tuple(arg.split(':')) if len(p) == 1: p = p + p return p def intpair(arg): p = arg.split(',') if len(p) == 1: p = p + p return tuple(int(v) for v in p) parser = argparse.ArgumentParser( description='Net dissect utility', prog='python -m netdissect', epilog=textwrap.dedent(help_epilog), formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--model', type=str, default=None, help='constructor for the model to test') parser.add_argument('--pthfile', type=str, default=None, help='filename of .pth file for the model') parser.add_argument('--outdir', type=str, default='dissect', help='directory for dissection output') parser.add_argument('--layers', type=strpair, nargs='+', help='space-separated list of layer names to dissect' + ', in the form layername[:reportedname]') parser.add_argument('--segments', type=str, default='dataset/broden', help='directory containing segmentation dataset') parser.add_argument('--download', action='store_true', default=False, help='downloads Broden dataset if needed') parser.add_argument('--imgsize', type=intpair, default=(227, 227), help='input image size to use') parser.add_argument('--netname', type=str, default=None, help='name for network in generated reports') parser.add_argument('--meta', type=str, nargs='+', help='json files of metadata to add to report') parser.add_argument('--examples', type=int, default=20, help='number of image examples per unit') parser.add_argument('--size', type=int, default=10000, help='dataset subset size to use') parser.add_argument('--broden_version', type=int, default=1, help='broden version number') parser.add_argument('--batch_size', type=int, default=100, help='batch size for forward pass') parser.add_argument('--num_workers', type=int, default=24, help='number of DataLoader workers') parser.add_argument('--quantile_threshold', type=float, default=None, help='quantile to use for masks') parser.add_argument('--no-labels', action='store_true', default=False, help='disables labeling of units') parser.add_argument('--ablation', action='store_true', default=False, help='enables single unit ablation of units') parser.add_argument('--iqr', action='store_true', default=False, help='enables iqr calculation') parser.add_argument('--maxiou', action='store_true', default=False, help='enables maxiou calculation') parser.add_argument('--covariance', action='store_true', default=False, help='enables covariance calculation') parser.add_argument('--no-images', action='store_true', default=False, help='disables generation of unit images') parser.add_argument('--single-images', action='store_true', default=False, help='generates single images also') parser.add_argument('--no-report', action='store_true', default=False, help='disables generation report summary') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA usage') parser.add_argument('--gan', type=str, default=None, help='netdissect.GanImageSegmenter() to probe a GAN') parser.add_argument('--perturbation', default=None, help='filename of perturbation attack to apply') parser.add_argument('--add_scale_offset', action='store_true', default=None, help='offsets masks according to stride and padding') parser.add_argument('--quiet', action='store_true', default=False, help='silences console output') if len(sys.argv) == 1: parser.print_usage(sys.stderr) sys.exit(1) args = parser.parse_args() args.images = not args.no_images args.report = not args.no_report args.labels = not args.no_labels # Set up console output verbose_progress(not args.quiet) # Speed up pytorch torch.backends.cudnn.benchmark = True # Special case: download flag without model to test. if args.model is None and args.download: from netdissect.broden import ensure_broden_downloaded for resolution in [224, 227, 384]: ensure_broden_downloaded(args.segments, resolution, args.broden_version) sys.exit(0) # Help if broden is not present if not os.path.isdir(args.segments): print_progress('Segmentation dataset not found at %s.' % args.segments) print_progress('Specify dataset directory using --segments [DIR]') print_progress('To download Broden, run: netdissect --download') sys.exit(1) # Default threshold if args.quantile_threshold is None: if args.gan: args.quantile_threshold = 0.01 else: args.quantile_threshold = 0.005 # Construct the network if args.model is None: print_progress('No model specified') sys.exit(1) # Set up CUDA args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda: torch.backends.cudnn.benchmark = True model = autoimport_eval(args.model) # Unwrap any DataParallel-wrapped model if isinstance(model, torch.nn.DataParallel): model = next(model.children()) # Default add_scale_offset only for AlexNet-looking models. if args.add_scale_offset is None and not args.gan: args.add_scale_offset = ('Alex' in model.__class__.__name__) # Load its state dict meta = {} if args.pthfile is None: print_progress('Dissecting model without pth file.') else: data = torch.load(args.pthfile) if 'state_dict' in data: meta = {} for key in data: if isinstance(data[key], numbers.Number): meta[key] = data[key] data = data['state_dict'] model.load_state_dict(data) # Update any metadata from files, if any if args.meta: for mfilename in args.meta: with open(mfilename) as f: meta.update(json.load(f)) # Instrument it and prepare it for eval if not args.layers: # Skip wrappers with only one named modele container = model prefix = '' while len(list(container.named_children())) == 1: name, container = next(container.named_children()) prefix += name + '.' # Default to all nontrivial top-level layers except last. args.layers = [ prefix + name for name, module in container.named_children() if type(module).__module__ not in [ # Skip ReLU and other activations. 'torch.nn.modules.activation', # Skip pooling layers. 'torch.nn.modules.pooling' ] ][:-1] print_progress('Defaulting to layers: %s' % ' '.join(args.layers)) retain_layers(model, args.layers, args.add_scale_offset) if args.gan: ablate_layers(model, args.layers) model.eval() if args.cuda: model.cuda() # Set up the output directory, verify write access if args.outdir is None: args.outdir = os.path.join('dissect', type(model).__name__) print_progress('Writing output into %s.' % args.outdir) os.makedirs(args.outdir, exist_ok=True) train_dataset = None if not args.gan: # Load dataset for ordinary case. # Load perturbation perturbation = numpy.load( args.perturbation) if args.perturbation else None # Load broden dataset dataset = try_to_load_broden(args.segments, args.imgsize, args.broden_version, perturbation, args.download, args.size) if dataset is None: ds = try_to_load_multiseg(args.segments, args.imgsize, perturbation, args.size) if dataset is None: print_progress('No segmentation dataset found in %s' % args.segements) print_progress('use --download to download Broden.') sys.exit(1) recovery = ReverseNormalize(IMAGE_MEAN, IMAGE_STDEV) else: # Examine first conv in model to determine input feature size. first_layer = [ c for c in model.modules() if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d, torch.nn.Linear)) ][0] # 4d input if convolutional, 2d input if first layer is linear. if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)): sample = standard_z_sample(args.size, first_layer.in_channels)[:, :, None, None] train_sample = standard_z_sample(args.size, first_layer.in_channels, seed=2)[:, :, None, None] else: sample = standard_z_sample(args.size, first_layer.in_features) train_sample = standard_z_sample(args.size, first_layer.in_features, seed=2) dataset = TensorDataset(sample) train_dataset = TensorDataset(train_sample) recovery = autoimport_eval(args.gan) # Run dissect dissect(args.outdir, model, dataset, train_dataset=train_dataset, recover_image=recovery, examples_per_unit=args.examples, netname=args.netname, quantile_threshold=args.quantile_threshold, meta=meta, make_images=args.images or args.single_images, make_labels=args.labels, make_ablation=args.ablation, make_iqr=args.iqr, make_maxiou=args.maxiou, make_covariance=args.covariance, make_report=args.report, make_row_images=args.images, make_single_images=args.single_images, batch_size=args.batch_size, num_workers=args.num_workers, settings=vars(args))
def main(): # Training settings def strpair(arg): p = tuple(arg.split(':')) if len(p) == 1: p = p + p return p def intpair(arg): p = arg.split(',') if len(p) == 1: p = p + p return tuple(int(v) for v in p) parser = argparse.ArgumentParser( description='Net dissect utility', prog='python -m netdissect', epilog=textwrap.dedent(help_epilog), formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--model', type=str, default=None, help='constructor for the model to test') parser.add_argument('--pthfile', type=str, default=None, help='filename of .pth file for the model') parser.add_argument('--outdir', type=str, default='dissect', help='directory for dissection output') parser.add_argument('--layers', type=strpair, nargs='+', help='space-separated list of layer names to dissect' + ', in the form layername[:reportedname]') parser.add_argument('--segments', type=str, default='dataset/broden', help='directory containing segmentation dataset') parser.add_argument('--download', action='store_true', default=False, help='downloads Broden dataset if needed') parser.add_argument('--imgsize', type=intpair, default=(227, 227), help='input image size to use') parser.add_argument('--netname', type=str, default=None, help='name for network in generated reports') parser.add_argument('--meta', type=str, nargs='+', help='json files of metadata to add to report') parser.add_argument('--examples', type=int, default=20, help='number of image examples per unit') parser.add_argument('--size', type=int, default=10000, help='dataset subset size to use') parser.add_argument('--broden_version', type=int, default=1, help='broden version number') parser.add_argument('--batch_size', type=int, default=100, help='batch size for forward pass') parser.add_argument('--num_workers', type=int, default=24, help='number of DataLoader workers') parser.add_argument('--no-labels', action='store_true', default=False, help='disables labeling of units') parser.add_argument('--no-images', action='store_true', default=False, help='disables generation of unit images') parser.add_argument('--single-images', action='store_true', default=False, help='generates single images also') parser.add_argument('--no-report', action='store_true', default=False, help='disables generation report summary') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA usage') parser.add_argument('--perturbation', default=None, help='filename of perturbation attack to apply') parser.add_argument('--add_scale_offset', action='store_true', default=None, help='offsets masks according to stride and padding') parser.add_argument('--quiet', action='store_true', default=False, help='silences console output') if len(sys.argv) == 1: parser.print_usage(sys.stderr) sys.exit(1) args = parser.parse_args() args.images = not args.no_images args.report = not args.no_report args.labels = not args.no_labels # Set up console output verbose_progress(not args.quiet) # Speed up pytorch torch.backends.cudnn.benchmark = True # Special case: download flag without model to test. if args.model is None and args.download: from netdissect.broden import ensure_broden_downloaded for resolution in [224, 227, 384]: ensure_broden_downloaded(args.segments, resolution, args.broden_version) sys.exit(0) # Help if broden is not present if not os.path.isdir(args.segments): print_progress('Segmentation dataset not found at %s.' % args.segments) print_progress('Specify dataset directory using --segments [DIR]') print_progress('To download Broden, run: netdissect --download') sys.exit(1) # Construct the network if args.model is None: print_progress('No model specified') sys.exit(1) # Set up CUDA args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda: torch.backends.cudnn.benchmark = True model = eval_constructor(args.model) # Default add_scale_offset only for AlexNet-looking models. if args.add_scale_offset is None: args.add_scale_offset = ('Alex' in model.__class__.__name__) # Load its state dict meta = {} if args.pthfile is None: print_progress('Dissecting model without pth file.') else: data = torch.load(args.pthfile) if 'state_dict' in data: meta = {} for key in data: if isinstance(data[key], numbers.Number): meta[key] = data[key] data = data['state_dict'] model.load_state_dict(data) # Update any metadata from files, if any if args.meta: for mfilename in args.meta: with open(mfilename) as f: meta.update(json.load(f)) # Instrument it and prepare it for eval if not args.layers: print_progress('No layers specified') sys.exit(1) retain_layers(model, args.layers, args.add_scale_offset) model.eval() if args.cuda: model.cuda() # Set up the output directory, verify write access if args.outdir is None: args.outdir = os.path.join('dissect', type(model).__name__) print_progress('Writing output into %s.' % args.outdir) os.makedirs(args.outdir, exist_ok=True) # Load perturbation perturbation = numpy.load(args.perturbation) if args.perturbation else None # Load broden dataset ds = try_to_load_broden(args.segments, args.imgsize, args.broden_version, perturbation, args.download, args.size) if ds is None: ds = try_to_load_multiseg(args.segments, args.imgsize, perturbation, args.size) if ds is None: print_progress('No segmentation dataset found in %s' % args.segements) print_progress('use --download to download Broden.') sys.exit(1) # Run dissect dissect(args.outdir, model, ds, recover_image=ReverseNormalize(IMAGE_MEAN, IMAGE_STDEV), examples_per_unit=args.examples, netname=args.netname, meta=meta, make_images=args.images, make_labels=args.labels, make_report=args.report, make_single_images=args.single_images, batch_size=args.batch_size, num_workers=args.num_workers, settings=vars(args))