def model(self): outdims = self.__self_dict() fn = layers.l2_regularizer(1e-5) fn0 = tf.no_regularizer with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=fn, biases_regularizer=fn0, normalizer_fn=slim.batch_norm): with slim.arg_scope([slim.batch_norm], is_training=False, updates_collections=None, decay=0.9, center=True, scale=True, epsilon=1e-5): pred_comb_ht, pred_comb_hand, pred_hand, pred_ht = basenet2( self.inputs, kp=1, is_training=False, outdims=outdims) self.hand_tensor = pred_hand
import tensorflow.contrib.layers as layers fn = layers.l2_regularizer(1e-5) fn0 = tf.no_regularizer with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=fn, biases_regularizer=fn0, normalizer_fn=slim.batch_norm): with slim.arg_scope([slim.batch_norm], is_training=is_train, updates_collections=None, decay=0.9, center=True, scale=True, epsilon=1e-5): pred_comb_ht, pred_comb_hand, pred_hand, pred_ht = basenet2( inputs, kp=kp, is_training=is_train, outdims=outdims) gt_palm_ht = tf.concat((gt_ht[:, :, :, 0:1], gt_ht[:, :, :, 1::4]), 3) gt_fing_ht = tf.concat( (gt_ht[:, :, :, 2::4], gt_ht[:, :, :, 3::4], gt_ht[:, :, :, 4::4]), 3) label1 = tf.reshape(label, (-1, 21, 3)) gt_fing = tf.reshape( tf.concat((label1[:, 2::4, :], label1[:, 3::4, :], label1[:, 4::4, :]), 1), (-1, 15 * 3)) gt_palm = tf.reshape(tf.concat((label1[:, 0:1, :], label1[:, 1::4, :]), 1), (-1, 6 * 3)) loss_ht = tf.nn.l2_loss((pred_ht - gt_ht)) / batch_size loss_hand = tf.nn.l2_loss((pred_hand - label)) / batch_size
fn = layers.l2_regularizer(1e-5) fn0 = tf.no_regularizer with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=fn, biases_regularizer=fn0, normalizer_fn=slim.batch_norm): with slim.arg_scope([slim.batch_norm], is_training=False, updates_collections=None, decay=0.9, center=True, scale=True, epsilon=1e-5): pred_comb_ht, pred_comb_hand, pred_hand, pred_ht = basenet2( inputs, kp=1, is_training=False) pred_out = pred_hand import time pred_norm = [] saver = tf.train.Saver(max_to_keep=5) with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) saver.restore(sess, '../../model/crossInfoNet_NYU.ckpt') loopv = test_num // batch_size other = test_data[loopv * batch_size:] a = time.time() for i in xrange(loopv + 1):