def testModelVariables(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) overfeat.overfeat(inputs, num_classes) expected_names = ['overfeat/conv1/weights', 'overfeat/conv1/biases', 'overfeat/conv2/weights', 'overfeat/conv2/biases', 'overfeat/conv3/weights', 'overfeat/conv3/biases', 'overfeat/conv4/weights', 'overfeat/conv4/biases', 'overfeat/conv5/weights', 'overfeat/conv5/biases', 'overfeat/fc6/weights', 'overfeat/fc6/biases', 'overfeat/fc7/weights', 'overfeat/fc7/biases', 'overfeat/fc8/weights', 'overfeat/fc8/biases', ] model_variables = [v.op.name for v in slim.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names))
def testModelVariables(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.test_session(): inputs = tf.random.uniform((batch_size, height, width, 3)) overfeat.overfeat(inputs, num_classes) expected_names = ['overfeat/conv1/weights', 'overfeat/conv1/biases', 'overfeat/conv2/weights', 'overfeat/conv2/biases', 'overfeat/conv3/weights', 'overfeat/conv3/biases', 'overfeat/conv4/weights', 'overfeat/conv4/biases', 'overfeat/conv5/weights', 'overfeat/conv5/biases', 'overfeat/fc6/weights', 'overfeat/fc6/biases', 'overfeat/fc7/weights', 'overfeat/fc7/biases', 'overfeat/fc8/weights', 'overfeat/fc8/biases', ] model_variables = [v.op.name for v in slim.get_model_variables()] self.assertSetEqual(set(model_variables), set(expected_names))
def testForward(self): batch_size = 1 height, width = 231, 231 with self.test_session() as sess: inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs) sess.run(tf.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any())
def testForward(self): batch_size = 1 height, width = 231, 231 with self.test_session() as sess: inputs = tf.random.uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs) sess.run(tf.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any())
def testFullyConvolutional(self): batch_size = 1 height, width = 281, 281 num_classes = 1000 with self.test_session(): inputs = tf.random.uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'overfeat/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes])
def testBuild(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs, num_classes) self.assertEquals(logits.op.name, 'overfeat/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes])
def testFullyConvolutional(self): batch_size = 1 height, width = 281, 281 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'overfeat/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes])
def testBuild(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.test_session(): inputs = tf.random.uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs, num_classes) self.assertEquals(logits.op.name, 'overfeat/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes])
def testEvaluation(self): batch_size = 2 height, width = 231, 231 num_classes = 1000 with self.test_session(): eval_inputs = tf.random.uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = tf.argmax(input=logits, axis=1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
def testEvaluation(self): batch_size = 2 height, width = 231, 231 num_classes = 1000 with self.test_session(): eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = tf.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 231, 231 eval_height, eval_width = 281, 281 num_classes = 1000 with self.test_session(): train_inputs = tf.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = overfeat.overfeat(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) tf.get_variable_scope().reuse_variables() eval_inputs = tf.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = overfeat.overfeat(eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = tf.reduce_mean(logits, [1, 2]) predictions = tf.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
def testGlobalPool(self): batch_size = 1 height, width = 281, 281 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False, global_pool=True) self.assertEqual(logits.op.name, 'overfeat/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 1, 1, num_classes])
def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 231, 231 eval_height, eval_width = 281, 281 num_classes = 1000 with self.test_session(): train_inputs = tf.random.uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = overfeat.overfeat(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) tf.get_variable_scope().reuse_variables() eval_inputs = tf.random.uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = overfeat.overfeat(eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = tf.reduce_mean(input_tensor=logits, axis=[1, 2]) predictions = tf.argmax(input=logits, axis=1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
def testEndPoints(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = overfeat.overfeat(inputs, num_classes) expected_names = [ 'overfeat/conv1', 'overfeat/pool1', 'overfeat/conv2', 'overfeat/pool2', 'overfeat/conv3', 'overfeat/conv4', 'overfeat/conv5', 'overfeat/pool5', 'overfeat/fc6', 'overfeat/fc7', 'overfeat/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
def testNoClasses(self): batch_size = 5 height, width = 231, 231 num_classes = None with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = overfeat.overfeat(inputs, num_classes) expected_names = [ 'overfeat/conv1', 'overfeat/pool1', 'overfeat/conv2', 'overfeat/pool2', 'overfeat/conv3', 'overfeat/conv4', 'overfeat/conv5', 'overfeat/pool5', 'overfeat/fc6', 'overfeat/fc7' ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) self.assertTrue(net.op.name.startswith('overfeat/fc7'))
def main(): """ You can also run these commands manually to generate the pb file 1. git clone https://github.com/tensorflow/models.git 2. export PYTHONPATH=Path_to_your_model_folder 3. python alexnet.py """ height, width = 231, 231 inputs = tf.Variable(tf.random_uniform((1, height, width, 3)), name='input') with slim.arg_scope(overfeat.overfeat_arg_scope()): net, end_points = overfeat.overfeat(inputs, is_training = False) print("nodes in the graph") for n in end_points: print(n + " => " + str(end_points[n])) net_outputs = map(lambda x: tf.get_default_graph().get_tensor_by_name(x), argv[2].split(',')) run_model(net_outputs, argv[1], 'overfeat', argv[3] == 'True')
def main(): """ You can also run these commands manually to generate the pb file 1. git clone https://github.com/tensorflow/models.git 2. export PYTHONPATH=Path_to_your_model_folder 3. python alexnet.py """ height, width = 231, 231 inputs = tf.Variable(tf.random_uniform((1, height, width, 3)), name='input') inputs = tf.identity(inputs, "input_node") with slim.arg_scope(overfeat.overfeat_arg_scope()): net, end_points = overfeat.overfeat(inputs, is_training = False) print("nodes in the graph") for n in end_points: print(n + " => " + str(end_points[n])) net_outputs = map(lambda x: tf.get_default_graph().get_tensor_by_name(x), argv[2].split(',')) run_model(net_outputs, argv[1], 'overfeat', argv[3] == 'True')
def testEndPoints(self): batch_size = 5 height, width = 231, 231 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = overfeat.overfeat(inputs, num_classes) expected_names = ['overfeat/conv1', 'overfeat/pool1', 'overfeat/conv2', 'overfeat/pool2', 'overfeat/conv3', 'overfeat/conv4', 'overfeat/conv5', 'overfeat/pool5', 'overfeat/fc6', 'overfeat/fc7', 'overfeat/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
def testNoClasses(self): batch_size = 5 height, width = 231, 231 num_classes = None with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = overfeat.overfeat(inputs, num_classes) expected_names = ['overfeat/conv1', 'overfeat/pool1', 'overfeat/conv2', 'overfeat/pool2', 'overfeat/conv3', 'overfeat/conv4', 'overfeat/conv5', 'overfeat/pool5', 'overfeat/fc6', 'overfeat/fc7' ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) self.assertTrue(net.op.name.startswith('overfeat/fc7'))