コード例 #1
0
    def testBuildClassificationNetwork(self):
        batch_size = 5
        num_frames = 64
        height, width = 224, 224
        num_classes = 1000

        inputs = tf.random.uniform((batch_size, num_frames, height, width, 3))
        logits, end_points = s3dg.s3dg(inputs, num_classes)
        self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
        self.assertListEqual(logits.get_shape().as_list(),
                             [batch_size, num_classes])
        self.assertTrue('Predictions' in end_points)
        self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                             [batch_size, num_classes])
コード例 #2
0
ファイル: s3dg_test.py プロジェクト: zhangjiulong/models
  def testBuildClassificationNetwork(self):
    batch_size = 5
    num_frames = 64
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
    logits, end_points = s3dg.s3dg(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])
コード例 #3
0
    def testEvaluation(self):
        batch_size = 2
        num_frames = 64
        height, width = 224, 224
        num_classes = 1000

        eval_inputs = tf.random.uniform(
            (batch_size, num_frames, height, width, 3))
        logits, _ = s3dg.s3dg(eval_inputs, num_classes, is_training=False)
        predictions = tf.argmax(input=logits, axis=1)

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            output = sess.run(predictions)
            self.assertEquals(output.shape, (batch_size, ))
コード例 #4
0
ファイル: s3dg_test.py プロジェクト: zhangjiulong/models
  def testEvaluation(self):
    batch_size = 2
    num_frames = 64
    height, width = 224, 224
    num_classes = 1000

    eval_inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
    logits, _ = s3dg.s3dg(eval_inputs, num_classes,
                          is_training=False)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))