コード例 #1
1
ファイル: trainval_net.py プロジェクト: jacke121/tf_rfcn
  # output directory where the models are saved
  output_dir = get_output_dir(imdb, args.tag)
  print('Output will be saved to `{:s}`'.format(output_dir))

  # tensorboard directory where the summaries are saved during training
  tb_dir = get_output_tb_dir(imdb, args.tag)
  print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir))

  # also add the validation set, but with no flipping images
  orgflip = cfg.TRAIN.USE_FLIPPED
  cfg.TRAIN.USE_FLIPPED = False
  _, valroidb = combined_roidb(args.imdbval_name)
  print('{:d} validation roidb entries'.format(len(valroidb)))
  cfg.TRAIN.USE_FLIPPED = orgflip

  # load network
  if args.net == 'vgg16':
    net = vgg16(batch_size=cfg.TRAIN.IMS_PER_BATCH)
  elif args.net == 'res50':
    net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=50)
  elif args.net == 'res101':
    net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=101)
  elif args.net == 'res152':
    net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=152)
  else:
    raise NotImplementedError
    
  train_net(net, imdb, roidb, valroidb, output_dir, tb_dir,
            pretrained_model=args.weight,
            max_iters=args.max_iters)
コード例 #2
0
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals
    args = parse_args()

    # model path
    demonet = args.demo_net
    dataset = args.dataset
    saved_model = os.path.join('output', demonet, DATASETS[dataset][0], 'default',
                               NETS[demonet][0] % (70000 if dataset == 'pascal_voc' else 110000))

    if not os.path.isfile(saved_model):
        raise IOError(('{:s} not found.\nDid you download the proper networks from '
                       'our server and place them properly?').format(saved_model))

    # load network
    if demonet == 'vgg16':
        net = vgg16()
    elif demonet == 'res101':
        net = resnetv1(num_layers=101)
    else:
        raise NotImplementedError
    net.create_architecture(21, tag='default', anchor_scales=[8, 16, 32])

    net.load_state_dict(torch.load(saved_model))

    net.eval()
    net.cuda()

    print('Loaded network {:s}'.format(saved_model))

    im_names = [i for i in os.listdir('data/demo/')  # Pull in all jpgs
                if i.lower().endswith(".jpg")]
コード例 #3
0
ファイル: demo.py プロジェクト: deeplxx/tf-faster-rcnn
                              NETS[demonet][0])


    if not os.path.isfile(tfmodel + '.meta'):
        raise IOError(('{:s} not found.\nDid you download the proper networks from '
                       'our server and place them properly?').format(tfmodel + '.meta'))

    # set config
    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    tfconfig.gpu_options.allow_growth=True

    # init session
    sess = tf.Session(config=tfconfig)
    # load network
    if demonet == 'vgg16':
        net = vgg16(batch_size=1)
    elif demonet == 'res101':
        net = resnetv1(batch_size=1, num_layers=101)
    else:
        raise NotImplementedError
    net.create_architecture(sess, "TEST", 21,
                          tag='default', anchor_scales=[8, 16, 32])
    saver = tf.train.Saver()
    saver.restore(sess, tfmodel)

    print('Loaded network {:s}'.format(tfmodel))

    im_names = ['000456.jpg', '000542.jpg', '001150.jpg',
                '001763.jpg', '004545.jpg']
    for im_name in im_names:
        print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
コード例 #4
0
    tag = args.tag
    tag = tag if tag else 'default'
    filename = tag + '/' + filename

    imdb = get_imdb(args.imdb_name)
    imdb.competition_mode(args.comp_mode)

    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    tfconfig.gpu_options.allow_growth = True

    # init session
    sess = tf.Session(config=tfconfig)
    # load network
    if args.net == 'vgg16':
        net = vgg16(batch_size=1)
    else:
        net = Resnet101(batch_size=1)
    # load model
    if imdb.name.startswith('voc'):
        anchors = [8, 16, 32]
    else:
        anchors = [4, 8, 16, 32]

    net.create_architecture(sess,
                            "TEST",
                            imdb.num_classes,
                            caffe_weight_path=args.weight,
                            tag='default',
                            anchor_scales=anchors)
コード例 #5
0
    print('Output will be saved to `{:s}`'.format(output_dir))

    # tensorboard directory where the summaries are saved during training
    tb_dir = get_output_tb_dir(imdb, args.tag)
    print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir))

    # also add the validation set, but with no flipping images
    orgflip = cfg.TRAIN.USE_FLIPPED
    cfg.TRAIN.USE_FLIPPED = False
    _, valroidb = combined_roidb(args.imdbval_name)
    print('{:d} validation roidb entries'.format(len(valroidb)))
    cfg.TRAIN.USE_FLIPPED = orgflip

    # load network
    if args.net == 'vgg16':
        net = vgg16()
    elif args.net == 'res50':
        net = resnetv1(num_layers=50)
    elif args.net == 'res101':
        net = resnetv1(num_layers=101)
    elif args.net == 'res152':
        net = resnetv1(num_layers=152)
    elif args.net == 'mobile':
        net = mobilenetv1()
    else:
        raise NotImplementedError

    train_net(net,
              imdb,
              roidb,
              valroidb,
コード例 #6
0
    print('Output will be saved to `{:s}`'.format(output_dir))

    # tensorboard directory where the summaries are saved during training
    tb_dir = get_output_tb_dir(imdb, args.tag)
    print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir))

    # also add the validation set, but with no flipping images
    orgflip = cfg.TRAIN.USE_FLIPPED
    cfg.TRAIN.USE_FLIPPED = False
    _, valroidb = combined_roidb(args.imdbval_name)
    print('{:d} validation roidb entries'.format(len(valroidb)))
    cfg.TRAIN.USE_FLIPPED = orgflip

    # load network
    if args.net == 'vgg16':
        net = vgg16(batch_size=cfg.TRAIN.IMS_PER_BATCH)
    elif args.net == 'res50':
        net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=50)
    elif args.net == 'res101':
        net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=101)
    elif args.net == 'res152':
        net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=152)
    # elif args.net == 'mobile':
    #   net = mobilenetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH)
    else:
        raise NotImplementedError

    train_net(net,
              imdb,
              roidb,
              valroidb,