def client_handler(c, addr, config, pid): message = {"code": 1} send_msg(c, json.dumps(message).encode("utf-8")) yolo_losses = [] complex_yolo_416 = [] response = [] net = None try: classes = open(config["classes_names_path"], "r").read().split("\n")[:-1] for i in range(3): yolo_losses.append(YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) except Exception as e: print(e.__str__()) return while True: try: res_start = time.time() data = recv_msg(c) start = time.time() info = json.loads(str(data.decode('utf-8'))) if info["code"] == 1 and info["name"] is not None: if info["name"] is not None: with open(config["images_path"] + info["name"], 'wb') as file: file.write(base64.b64decode(info["data"])) if info["app"] == "yolo3": if net is None: net = initial_yolo_model(config, info["size"]) compute_time, cpu, complex_yolo_416= detect_image(info["name"], response, config, net, yolo_losses, classes, complex_yolo_416, pid) elif info["app"] == "yolo2": if net is None: net = initial_yolo_model_2() start_yolo_2 = time.time() img = cv2.imread(os.path.join(config["images_path"], info["name"])) net.return_predict(img) compute_time = time.time() - start_yolo_2 cpu = psutil.cpu_percent()/100 complex_yolo_416.append(compute_time * cpu * 2.8) print("\tyolo2} finished in {}s, system response in {} s, cpu in {} cycles(10^9)" .format(round(cpu, 3), round(compute_time, 4) , round(np.average(response), 4) , round(np.average(complex_yolo_416), 3))) else: if net is None: net = initial_pose_model(config) compute_time, cpu, complex_yolo_416 = detect_pose(info["name"], net, response, config, complex_yolo_416, pid) message = {"code": 2, "time": time.time() - start, "inx": info["inx"], "cpu": cpu, "compute_time": compute_time, "path": info["name"], "next": True, "timestamp": info["timestamp"]} send_msg(c, json.dumps(message).encode("utf-8")) response.append(round(time.time() - res_start, 3)) if info["code"] == -1: c.close() print(addr, "close") except Exception as e: print("1." + traceback.format_exc()) return print(list(response))
def __init__(self, config, is_training): self.config = config self.is_training = is_training use_gpu = config.use_gpu self.net = Model(self.config, is_training=self.is_training) if self.is_training: self.net.train(is_training) else: self.net.eval() self.net.init_weights(gpu=use_gpu) if self.is_training: self.optimizer = self._get_optimizer() if len(self.config.parallels) > 0: self.net = nn.DataParallel(self.net) if use_gpu: self.net = self.net.cuda() self.yolo_loss = [] for i in range(3): self.yolo_loss.append( YOLOLoss(config.anchors[i], config.image_size, config.num_classes)) #if is_refine: # self.refine_loss = RefineLoss(config.anchors, config.num_classes, (config.image_size, config.image_size)) if config.pretrained_weights: logging.info("Load pretrained weights from {}".format( config.pretrained_weights)) if use_gpu: checkpoint = torch.load(config.pretrained_weights) else: checkpoint = torch.load(config.pretrained_weights, map_location=torch.device('cpu')) state_dict = checkpoint['state_dict'] self.net.load_state_dict(state_dict) self.epoch = checkpoint["epoch"] + 1 self.global_step = checkpoint['global step'] + 1 else: self.epoch = 0 self.global_step = 0 if config.official_weights: logging.info("Loading official weights from {}".format( config.official_weights)) self.net.load_state_dict(torch.load(config.official_weights)) self.global_step = 20000 #self.pre_prune_weights() #self.prune_weights_in_training_perc() self.prune_weights_in_training_thresh()
def detect(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # Load tested img imgfile = config["img_path"] img = Image.open(imgfile).convert('RGB') resized = img.resize((config["img_w"], config["img_h"])) input = image2torch(resized) input = input.to(torch.device("cuda")) start = time.time() outputs = net(input) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) output = non_max_suppression(output, config["yolo"]["classes"], conf_thres=0.5, nms_thres=0.4) finish = time.time() print('%s: Predicted in %f seconds.' % (imgfile, (finish - start))) namefile = config["classname_path"] class_names = load_class_names(namefile) plot_boxes(img, output, 'predictions.jpg', class_names)
def main(video_fn): logging.basicConfig(level=logging.DEBUG, format="[%(asctime)s %(filename)s] %(message)s") if len(sys.argv) != 2: logging.error("Usage: python video.py params.py") sys.exit() params_path = sys.argv[1] if not os.path.isfile(params_path): logging.error("no params file found! path: {}".format(params_path)) sys.exit() config = importlib.import_module(params_path[:-3]).TRAINING_PARAMS config["batch_size"] *= len(config["parallels"]) is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # load pretrained model if config["pretrain_snapshot"]: logging.info("load checkpoint from {}".format( config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: raise Exception("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # load class names classes = open(config["classes_names_path"], "r").read().split("\n")[:-1] cap = cv2.VideoCapture(video_fn) # Check if camera opened successfully if (cap.isOpened() == False): print("Error opening video stream or file") # Read until video is completed while (cap.isOpened()): # Capture frame-by-frame ret, frame = cap.read() frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5) if ret == True: # 1. pre-process image logging.info("processing frame") image_tensor = prep_image(frame, config) with torch.no_grad(): outputs = net(image_tensor) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) batch_detections = non_max_suppression( output, config["yolo"]["classes"], conf_thres=config["confidence_threshold"], nms_thres=0.45) for idx, detections in enumerate(batch_detections): if detections is not None: unique_labels = detections[:, -1].cpu().unique() n_cls_preds = len(unique_labels) bbox_colors = random.sample(colors, n_cls_preds) for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: color = bbox_colors[int( np.where(unique_labels == int(cls_pred))[0])] # Rescale coordinates to original dimensions x1, y1, box_w, box_h = get_rescaled_coords( frame.shape[0], frame.shape[1], config["img_h"], config["img_w"], x1, y1, x2, y2) cv2.rectangle(frame, (x1, y1), (x1 + box_w, y1 + box_h), color, 2) cv2.putText(frame, classes[int(cls_pred)], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 1, cv2.LINE_AA) cv2.imshow('Frame', frame) # Press Q on keyboard to exit if cv2.waitKey(25) & 0xFF == ord('q'): break # Break the loop else: break # When everything done, release the video capture object cap.release() # Closes all the frames cv2.destroyAllWindows()
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(COCODataset( config["val_path"], (config["img_w"], config["img_h"]), is_training=False), batch_size=config["batch_size"], shuffle=False, num_workers=16, pin_memory=False) # Start the eval loop logging.info("Start eval.") n_gt = 0 correct = 0 for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] labels = labels.cuda() with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) output = non_max_suppression(output, 80, conf_thres=0.2) # calculate for sample_i in range(labels.size(0)): # Get labels for sample where width is not zero (dummies) target_sample = labels[sample_i, labels[sample_i, :, 3] != 0] for obj_cls, tx, ty, tw, th in target_sample: # Get rescaled gt coordinates tx1, tx2 = config["img_w"] * ( tx - tw / 2), config["img_w"] * (tx + tw / 2) ty1, ty2 = config["img_h"] * ( ty - th / 2), config["img_h"] * (ty + th / 2) n_gt += 1 box_gt = torch.cat([ coord.unsqueeze(0) for coord in [tx1, ty1, tx2, ty2] ]).view(1, -1) sample_pred = output[sample_i] if sample_pred is not None: # Iterate through predictions where the class predicted is same as gt for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred[ sample_pred[:, 6] == obj_cls]: box_pred = torch.cat([ coord.unsqueeze(0) for coord in [x1, y1, x2, y2] ]).view(1, -1) iou = bbox_iou(box_pred, box_gt) if iou >= config["iou_thres"]: correct += 1 break if n_gt: logging.info('Batch [%d/%d] mAP: %.5f' % (step, len(dataloader), float(correct / n_gt))) logging.info('Mean Average Precision: %.5f' % float(correct / n_gt))
def Evaluate(net, config): # logger = GetLogger(output_file=config['output_file']) print('Start evaluating.') net.eval() device = config['device'] with open(config['class_names'], 'r') as f: class_names = f.read().split('\n')[:-1] dataset = DAC_SDC_2020_Dataset(dataset_path=config['valid_path'], class_names=class_names, img_w=config['img_w'], img_h=config['img_h'], is_training=False) yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]), config['device'])) batch_size = config['valid_batch_size'] results = [] right = 0 for step in range(0, len(dataset), batch_size): # print('step:', step) samples = [] for ii in range(step, min(len(dataset), step + batch_size)): samples.append(dataset[ii]) images = torch.cat( [sample['image'].unsqueeze(0) for sample in samples], 0) images = images.to(device) with torch.no_grad(): outputs = net(images) tt = [] for i in range(3): tt.append(yolo_losses[i](outputs[i])) tt = torch.cat(tt, 1) for kk in range(len(samples)): t = tt[kk] best = t[:, 4].argmax() qq = t[best] cc = qq[5:].argmax() x = qq[0] / samples[kk]['image'].size( 2) * samples[kk]['original_image'].shape[1] y = qq[1] / samples[kk]['image'].size( 1) * samples[kk]['original_image'].shape[0] w = qq[2] / samples[kk]['image'].size( 2) * samples[kk]['original_image'].shape[1] h = qq[3] / samples[kk]['image'].size( 1) * samples[kk]['original_image'].shape[0] x1 = int(x - w / 2) y1 = int(y - h / 2) x2 = int(x + w / 2) y2 = int(y + h / 2) bbox = [x1, y1, x2, y2] iou = GetIOU(bbox, samples[kk]['original_bbox']) if samples[kk]['original_label'] == class_names[cc]: right += 1 # logger.info('file: ' + samples[kk]['jpg_path']) # logger.info('pred: ' + str(bbox) + ' ' + class_names[cc]) # logger.info('gt: ' + str(samples[kk]['original_bbox']) + ' ' + samples[kk]['original_label']) # logger.info(f'iou: {iou}\n') result = { 'jpg_path': samples[kk]['jpg_path'], 'pred': { 'bbox': bbox, 'class': class_names[cc], }, 'gt': { 'bbox': samples[kk]['original_bbox'], 'class': samples[kk]['original_label'], }, 'iou': iou, } results.append(result) mean_iou = np.array([res['iou'] for res in results]).mean() # logger.info('Mean IOU: ' + str(ious.mean())) info = { 'mean_iou': mean_iou, 'accuracy': right / len(results), 'results': results, 'config': config, } return info
def test(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("load checkpoint from {}".format( config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: raise Exception("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # prepare images path images_name = os.listdir(config["images_path"]) images_path = [ os.path.join(config["images_path"], name) for name in images_name ] if len(images_path) == 0: raise Exception("no image found in {}".format(config["images_path"])) # Start testing FPS of different batch size for batch_size in range(1, 10): # preprocess images = [] for path in images_path[:batch_size]: image = cv2.imread(path, cv2.IMREAD_COLOR) if image is None: logging.error("read path error: {}. skip it.".format(path)) continue image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, (config["img_w"], config["img_h"]), interpolation=cv2.INTER_LINEAR) image = image.astype(np.float32) image /= 255.0 image = np.transpose(image, (2, 0, 1)) image = image.astype(np.float32) images.append(image) for i in range(batch_size - len(images)): images.append(images[0]) # fill len to batch_sze images = np.asarray(images) images = torch.from_numpy(images).cuda() # inference in 30 times and calculate average inference_times = [] for i in range(30): start_time = time.time() with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) batch_detections = non_max_suppression( output, config["yolo"]["classes"], conf_thres=config["confidence_threshold"]) torch.cuda.synchronize() # wait all done. end_time = time.time() inference_times.append(end_time - start_time) inference_time = sum(inference_times) / len( inference_times) / batch_size fps = 1.0 / inference_time logging.info( "Batch_Size: {}, Inference_Time: {:.5f} s/image, FPS: {}".format( batch_size, inference_time, fps))
def train(config): # Hyper-parameters config["global_step"] = config.get("start_step", 0) is_training = True # Net & Loss & Optimizer ## Net Main net = ModelMain(config, is_training=is_training) net.train(is_training) ## YOLO Loss with 3 scales yolo_losses = [] for i in range(3): yolo_loss = YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"])) yolo_losses.append(yolo_loss) ## Optimizer and LR scheduler optimizer = _get_optimizer(config, net) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=config["lr"]["decay_step"], gamma=config["lr"]["decay_gamma"]) net = nn.DataParallel(net) net = net.cuda() # Load checkpoint if config["pretrain_snapshot"]: logging.info("Load pretrained weights from {}".format(config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) # DataLoader dataloader = torch.utils.data.DataLoader(AIPrimeDataset(config["train_path"]), batch_size=config["batch_size"], shuffle=True, num_workers=16, pin_memory=False) # Start the training logging.info("Start training.") for epoch in range(config["start_epoch"], config["epochs"]): for step, (images, labels) in enumerate(dataloader): start_time = time.time() config["global_step"] += 1 # Forward outputs = net(images) # Loss losses_name = ["total_loss", "x", "y", "w", "h", "conf", "cls"] losses = [[]] * len(losses_name) for i in range(3): _loss_item = yolo_losses[i](outputs[i], labels) for j, l in enumerate(_loss_item): losses[j].append(l) losses = [sum(l) for l in losses] loss = losses[0] # Zero & Backward & Step optimizer.zero_grad() loss.backward() optimizer.step() # Logging if step > 0 and step % 10 == 0: _loss = loss.item() duration = float(time.time() - start_time) example_per_second = config["batch_size"] / duration lr = optimizer.param_groups[0]['lr'] logging.info( "epoch [%.3d] iter = %d loss = %.2f example/sec = %.3f lr = %.5f " % (epoch, step, _loss, example_per_second, lr) ) # Things to be done for every epoch ## LR schedule lr_scheduler.step() ## Save checkpoint _save_checkpoint(net.state_dict(), config, epoch) # Finish training logging.info("QiaJiaBa~ BeiBei")
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load checkpoint: {}".format(config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader. dataloader = torch.utils.data.DataLoader(COCODataset( config["val_path"], (config["img_w"], config["img_h"]), is_training=False), batch_size=config["batch_size"], shuffle=False, num_workers=8, pin_memory=False) # Coco Prepare. index2category = json.load(open("coco_index2category.json")) # Start the eval loop logging.info("Start eval.") coco_results = [] coco_img_ids = set([]) for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] image_paths, origin_sizes = samples["image_path"], samples[ "origin_size"] with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) batch_detections = non_max_suppression(output, config["yolo"]["classes"], conf_thres=0.01, nms_thres=0.45) for idx, detections in enumerate(batch_detections): image_id = int(os.path.basename(image_paths[idx])[-16:-4]) coco_img_ids.add(image_id) if detections is not None: origin_size = eval(origin_sizes[idx]) detections = detections.cpu().numpy() for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: x1 = x1 / config["img_w"] * origin_size[0] x2 = x2 / config["img_w"] * origin_size[0] y1 = y1 / config["img_h"] * origin_size[1] y2 = y2 / config["img_h"] * origin_size[1] w = x2 - x1 h = y2 - y1 coco_results.append({ "image_id": image_id, "category_id": index2category[str(int(cls_pred.item()))], "bbox": (float(x1), float(y1), float(w), float(h)), "score": float(conf), }) logging.info("Now {}/{}".format(step, len(dataloader))) save_results_path = "coco_results.json" with open(save_results_path, "w") as f: json.dump(coco_results, f, sort_keys=True, indent=4, separators=(',', ':')) logging.info("Save coco format results to {}".format(save_results_path)) # COCO api logging.info("Using coco-evaluate tools to evaluate.") cocoGt = COCO(config["annotation_path"]) cocoDt = cocoGt.loadRes(save_results_path) cocoEval = COCOeval(cocoGt, cocoDt, "bbox") cocoEval.params.imgIds = list(coco_img_ids) # real imgIds cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize()
} } device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = YoloHead(config) model.load_state_dict(torch.load('weights/yolov3_orig.pth')) model = model.to(device) model.train() losses = [] cc_res = [] confidence = 0.1 iou_threshold = 0.6 for i in range(3): losses.append( YOLOLoss(config['yolo']['anchors'][i], 80, [416, 416])) forw_sum = 0 with torch.no_grad(): for batch_idx, (images, targets) in enumerate(test_dataloader): # measure data loading time images = images.to(device) targets2 = [] for t in targets: dd = {} for k, v in t.items(): if (k != 'img_size'): dd[k] = v.to(device) else:
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append(YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(dataset=COCODataset(config["val_path"], config["img_w"]), batch_size=config["batch_size"], shuffle=True, num_workers=1, pin_memory=False) # Start the eval loop logging.info("Start eval.") n_gt = 0 correct = 0 logging.info('%s' % str(dataloader)) gt_histro={} pred_histro = {} correct_histro = {} for i in range(config["yolo"]["classes"]): gt_histro[i] = 1 pred_histro[i] = 1 correct_histro[i] = 0 # images 是一个batch里的全部图片,labels是一个batch里面的全部标签 for step, (images, labels) in enumerate(dataloader): labels = labels.cuda() with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) # 把三个尺度上的预测结果在第1维度(第0维度是batch里的照片,第1维度是一张照片里面的各个预测框,第2维度是各个预测数值)上拼接起来 batch_output = torch.cat(output_list, dim=1) logging.info('%s' % str(batch_output.shape)) # 进行NMS抑制 batch_output = non_max_suppression(prediction=batch_output, num_classes=config["yolo"]["classes"], conf_thres=config["conf_thresh"], nms_thres=config["nms_thresh"]) # calculate for sample_index_in_batch in range(labels.size(0)): # fetched img sample in tensor( C(RxGxB) x H x W ), transform to cv2 format in H x W x C(BxGxR) sample_image = images[sample_index_in_batch].numpy() sample_image = np.transpose(sample_image, (1, 2, 0)) sample_image = cv2.cvtColor(sample_image, cv2.COLOR_RGB2BGR) logging.debug("fetched img %d size %s" % (sample_index_in_batch, sample_image.shape)) # Get labels for sample where width is not zero (dummies)(init all labels to zeros in array) target_sample = labels[sample_index_in_batch, labels[sample_index_in_batch, :, 3] != 0] # get prediction for this sample sample_pred = batch_output[sample_index_in_batch] if sample_pred is not None: for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred: # for each prediction box # logging.info("%d" % obj_cls) box_pred = torch.cat([coord.unsqueeze(0) for coord in [x1, y1, x2, y2]]).view(1, -1) sample_image = draw_prediction(sample_image,conf, obj_conf, int(obj_pred), (x1, y1, x2, y2), config) # 每一个ground truth的 分类编号obj_cls、相对中心x、相对中心y、相对宽w、相对高h for obj_cls, tx, ty, tw, th in target_sample: # Get rescaled gt coordinates # 转化为输入像素尺寸的 左上角像素tx1 ty1,右下角像素tx2 ty2 tx1, tx2 = config["img_w"] * (tx - tw / 2), config["img_w"] * (tx + tw / 2) ty1, ty2 = config["img_h"] * (ty - th / 2), config["img_h"] * (ty + th / 2) # 计算ground truth数量,用于统计信息 n_gt += 1 gt_histro[int(obj_cls)] += 1 # 转化为 shape(1,4)的tensor,用来计算IoU box_gt = torch.cat([coord.unsqueeze(0) for coord in [tx1, ty1, tx2, ty2]]).view(1, -1) # logging.info('%s' % str(box_gt.shape)) sample_pred = batch_output[sample_index_in_batch] if sample_pred is not None: # Iterate through predictions where the class predicted is same as gt # 对于每一个ground truth,遍历预测结果 for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred[sample_pred[:, 6] == obj_cls]: # 如果当前预测分类 == 当前真实分类 #logging.info("%d" % obj_cls) box_pred = torch.cat([coord.unsqueeze(0) for coord in [x1, y1, x2, y2]]).view(1, -1) pred_histro[int(obj_pred)] += 1 iou = bbox_iou(box_pred, box_gt) if iou >= config["iou_thresh"]: correct += 1 correct_histro[int(obj_pred)] += 1 break if n_gt: types = config["types"] reverse_types = {} # 建立一个反向的types for key in types.keys(): reverse_types[types[key]] = key logging.info('Batch [%d/%d] mAP: %.5f' % (step, len(dataloader), float(correct / n_gt))) logging.info('mAP Histro:%s' % str([ reverse_types[i] +':'+ str(int(100 * correct_histro[i] / gt_histro[i])) for i in range(config["yolo"]["classes"] ) ])) logging.info('Recall His:%s' % str([ reverse_types[i] +':'+ str(int(100 * correct_histro[i] / pred_histro[i])) for i in range(config["yolo"]["classes"]) ])) logging.info('Mean Average Precision: %.5f' % float(correct / n_gt))
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load checkpoint: {}".format(config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader. dataloader = torch.utils.data.DataLoader(COCODataset( config["val_path"], (config["img_w"], config["img_h"]), is_training=False), batch_size=config["batch_size"], shuffle=False, num_workers=8, pin_memory=False) # Coco Prepare. index2category = json.load(open("coco_index2category.json")) # Start the eval loop logging.info("Start eval.") coco_results = [] coco_img_ids = set([]) APs = [] for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] image_paths, origin_sizes = samples["image_path"], samples[ "origin_size"] with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) batch_detections = non_max_suppression(output, config["yolo"]["classes"], conf_thres=0.0001, nms_thres=0.45) for idx, detections in enumerate(batch_detections): correct = [] annotations = labels[idx, labels[idx, :, 3] != 0] image_id = int(os.path.basename(image_paths[idx])[-16:-4]) coco_img_ids.add(image_id) if detections is None: if annotations.size(0) != 0: APs.append(0) continue detections = detections[np.argsort(-detections[:, 4])] origin_size = eval(origin_sizes[idx]) detections = detections.cpu().numpy() # =========================================================================================================================== # The amount of padding that was added pad_x = max(origin_size[1] - origin_size[0], 0) * (config["img_w"] / max(origin_size)) pad_y = max(origin_size[0] - origin_size[1], 0) * (config["img_w"] / max(origin_size)) # Image height and width after padding is removed unpad_h = config["img_w"] - pad_y unpad_w = config["img_w"] - pad_x # =========================================================================================================================== if annotations.size(0) == 0: correct.extend([0 for _ in range(len(detections))]) else: target_boxes = torch.FloatTensor(annotations[:, 1:].shape) target_boxes[:, 0] = (annotations[:, 1] - annotations[:, 3] / 2) target_boxes[:, 1] = (annotations[:, 2] - annotations[:, 4] / 2) target_boxes[:, 2] = (annotations[:, 1] + annotations[:, 3] / 2) target_boxes[:, 3] = (annotations[:, 2] + annotations[:, 4] / 2) target_boxes *= config["img_w"] detected = [] for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: pred_bbox = (x1, y1, x2, y2) #x1 = x1 / config["img_w"] * origin_size[0] #x2 = x2 / config["img_w"] * origin_size[0] #y1 = y1 / config["img_h"] * origin_size[1] #y2 = y2 / config["img_h"] * origin_size[1] #w = x2 - x1 #h = y2 - y1 h = ((y2 - y1) / unpad_h) * origin_size[1] w = ((x2 - x1) / unpad_w) * origin_size[0] y1 = ((y1 - pad_y // 2) / unpad_h) * origin_size[1] x1 = ((x1 - pad_x // 2) / unpad_w) * origin_size[0] coco_results.append({ "image_id": image_id, "category_id": index2category[str(int(cls_pred.item()))], "bbox": (float(x1), float(y1), float(w), float(h)), "score": float(conf), }) pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1) # Compute iou with target boxes iou = bbox_iou(pred_bbox, target_boxes) # Extract index of largest overlap best_i = np.argmax(iou) # If overlap exceeds threshold and classification is correct mark as correct if iou[best_i] > config[ 'iou_thres'] and cls_pred == annotations[ best_i, 0] and best_i not in detected: correct.append(1) detected.append(best_i) else: correct.append(0) true_positives = np.array(correct) false_positives = 1 - true_positives # Compute cumulative false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # Compute recall and precision at all ranks recall = true_positives / annotations.size(0) if annotations.size( 0) else true_positives precision = true_positives / np.maximum( true_positives + false_positives, np.finfo(np.float64).eps) # Compute average precision AP = compute_ap(recall, precision) APs.append(AP) print("+ Sample [%d/%d] AP: %.4f (%.4f)" % (len(APs), 5000, AP, np.mean(APs))) logging.info("Now {}/{}".format(step, len(dataloader))) print("Mean Average Precision: %.4f" % np.mean(APs)) save_results_path = "coco_results.json" with open(save_results_path, "w") as f: json.dump(coco_results, f, sort_keys=True, indent=4, separators=(',', ':')) logging.info("Save coco format results to {}".format(save_results_path)) # COCO api logging.info("Using coco-evaluate tools to evaluate.") cocoGt = COCO(config["annotation_path"]) cocoDt = cocoGt.loadRes(save_results_path) cocoEval = COCOeval(cocoGt, cocoDt, "bbox") cocoEval.params.imgIds = list(coco_img_ids) # real imgIds cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize()
def train(imgs, labels, checkpoint_path, config): config["global_step"] = config.get("start_step", 0) is_training = False if config.get("export_onnx") else True # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Optimizer and learning rate optimizer = _get_optimizer(config, net) lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=config["lr"]["decay_step"], gamma=config["lr"]["decay_gamma"]) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if checkpoint_path: logging.info("Load pretrained weights from {}".format(checkpoint_path)) state_dict = torch.load(checkpoint_path) net.load_state_dict(state_dict) # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(SatDataset( imgs, labels, (config["img_w"], config["img_h"]), is_training=True), batch_size=config["batch_size"], shuffle=True, num_workers=1, pin_memory=True) # Start the training loop logging.info("Start training.") for epoch in range(config["epochs"]): for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] start_time = time.time() config["global_step"] += 1 # Forward and backward optimizer.zero_grad() outputs = net(images) losses_name = ["total_loss", "x", "y", "w", "h", "conf", "cls"] losses = [[]] * len(losses_name) for i in range(3): _loss_item = yolo_losses[i](outputs[i], labels) for j, l in enumerate(_loss_item): losses[j].append(l) losses = [sum(l) for l in losses] loss = losses[0] loss.backward() optimizer.step() if step > 0 and step % 10 == 0: _loss = loss.item() duration = float(time.time() - start_time) example_per_second = config["batch_size"] / duration lr = optimizer.param_groups[0]['lr'] logging.info( "epoch [%.3d] iter = %d loss = %.2f example/sec = %.3f lr = %.5f " % (epoch, step, _loss, example_per_second, lr)) config["tensorboard_writer"].add_scalar( "lr", lr, config["global_step"]) config["tensorboard_writer"].add_scalar( "example/sec", example_per_second, config["global_step"]) for i, name in enumerate(losses_name): value = _loss if i == 0 else losses[i] config["tensorboard_writer"].add_scalar( name, value, config["global_step"]) lr_scheduler.step() # net.train(False) checkpoint_path = _save_checkpoint(net.state_dict(), config) # net.train(True) logging.info("Bye~") return checkpoint_path
def test(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("load checkpoint from {}".format( config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: raise Exception("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # prepare images path images_name = os.listdir(config["images_path"]) images_path = [ os.path.join(config["images_path"], name) for name in images_name ] if len(images_path) == 0: raise Exception("no image found in {}".format(config["images_path"])) # Start inference batch_size = config["batch_size"] for step in range(0, len(images_path), batch_size): # preprocess images = [] images_origin = [] for path in images_path[step * batch_size:(step + 1) * batch_size]: logging.info("processing: {}".format(path)) image = cv2.imread(path, cv2.IMREAD_COLOR) if image is None: logging.error("read path error: {}. skip it.".format(path)) continue image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) images_origin.append(image) # keep for save result image = cv2.resize(image, (config["img_w"], config["img_h"]), interpolation=cv2.INTER_LINEAR) image = image.astype(np.float32) image /= 255.0 image = np.transpose(image, (2, 0, 1)) image = image.astype(np.float32) images.append(image) images = np.asarray(images) images = torch.from_numpy(images).cuda() # inference with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) output = torch.cat(output_list, 1) batch_detections = non_max_suppression( output, config["yolo"]["classes"], conf_thres=config["confidence_threshold"]) # write result images. Draw bounding boxes and labels of detections classes = open(config["classes_names_path"], "r").read().split("\n")[:-1] if not os.path.isdir("./output/"): os.makedirs("./output/") for idx, detections in enumerate(batch_detections): plt.figure() fig, ax = plt.subplots(1) ax.imshow(images_origin[idx]) if detections is not None: unique_labels = detections[:, -1].cpu().unique() n_cls_preds = len(unique_labels) bbox_colors = random.sample(colors, n_cls_preds) for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: color = bbox_colors[int( np.where(unique_labels == int(cls_pred))[0])] # Rescale coordinates to original dimensions ori_h, ori_w = images_origin[idx].shape[:2] pre_h, pre_w = config["img_h"], config["img_w"] box_h = ((y2 - y1) / pre_h) * ori_h box_w = ((x2 - x1) / pre_w) * ori_w y1 = (y1 / pre_h) * ori_h x1 = (x1 / pre_w) * ori_w # Create a Rectangle patch bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2, edgecolor=color, facecolor='none') # Add the bbox to the plot ax.add_patch(bbox) # Add label plt.text(x1, y1, s=classes[int(cls_pred)], color='white', verticalalignment='top', bbox={ 'color': color, 'pad': 0 }) # Save generated image with detections plt.axis('off') plt.gca().xaxis.set_major_locator(NullLocator()) plt.gca().yaxis.set_major_locator(NullLocator()) plt.savefig('output/{}_{}.jpg'.format(step, idx), bbox_inches='tight', pad_inches=0.0) plt.close() logging.info("Save all results to ./output/")
def evaluate(config): is_training = False # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) else: logging.warning("missing pretrain_snapshot!!!") # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append(YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(dataset=COCODataset(config["test_path"], config["img_w"]), batch_size=config["batch_size"], shuffle=False, num_workers=8, pin_memory=False) # Start the eval loop #logging.info("Start eval.") n_gt = 0 correct = 0 #logging.debug('%s' % str(dataloader)) gt_histro={} pred_histro = {} correct_histro = {} for i in range(config["yolo"]["classes"]): gt_histro[i] = 1 pred_histro[i] = 1 correct_histro[i] = 0 # images 是一个batch里的全部图片,labels是一个batch里面的全部标签 for step, (images, labels) in enumerate(dataloader): labels = labels.cuda() with torch.no_grad(): outputs = net(images) output_list = [] for i in range(3): output_list.append(yolo_losses[i](outputs[i])) # 把三个尺度上的预测结果在第1维度(第0维度是batch里的照片,第1维度是一张照片里面的各个预测框,第2维度是各个预测数值)上拼接起来 output = torch.cat(output_list, dim=1) #logging.info('%s' % str(output.shape)) # 进行NMS抑制 #output = non_max_suppression(prediction=output, num_classes=config["yolo"]["classes"], conf_thres=config["conf_thresh"], nms_thres=config["nms_thresh"]) output = class_nms(prediction=output, num_classes=config["yolo"]["classes"],conf_thres=config["conf_thresh"], nms_thres=config["nms_thresh"]) # calculate for sample_i in range(labels.size(0)): # 计算所有的预测数量 sample_pred = output[sample_i] if sample_pred is not None: #logging.debug(sample_pred.shape) for i in range(sample_pred.shape[0]): pred_histro[int(sample_pred[i,6])] += 1 # Get labels for sample where width is not zero (dummies) target_sample = labels[sample_i, labels[sample_i, :, 3] != 0] # Ground truth的 分类编号obj_cls、相对中心x、相对中心y、相对宽w、相对高h n_gt=0 correct=0 for obj_cls, tx, ty, tw, th in target_sample: # Get rescaled gt coordinates # 转化为输入像素尺寸的 左上角像素tx1 ty1,右下角像素tx2 ty2 tx1, tx2 = config["img_w"] * (tx - tw / 2), config["img_w"] * (tx + tw / 2) ty1, ty2 = config["img_h"] * (ty - th / 2), config["img_h"] * (ty + th / 2) # 计算ground truth数量,用于统计信息 n_gt += 1 gt_histro[int(obj_cls)] += 1 # 转化为 shape(1,4)的tensor,用来计算IoU box_gt = torch.cat([coord.unsqueeze(0) for coord in [tx1, ty1, tx2, ty2]]).view(1, -1) # logging.info('%s' % str(box_gt.shape)) sample_pred = output[sample_i] if sample_pred is not None: # Iterate through predictions where the class predicted is same as gt # 对于每一个ground truth,遍历预测结果 for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred[sample_pred[:, 6] == obj_cls]: # 如果当前预测分类 == 当前真实分类 #logging.info("%d" % obj_cls) box_pred = torch.cat([coord.unsqueeze(0) for coord in [x1, y1, x2, y2]]).view(1, -1) #pred_histro[int(obj_pred)] += 1 iou = bbox_iou(box_pred, box_gt) #if iou >= config["iou_thres"] and obj_conf >= config["obj_thresh"]: if iou >= config["iou_thresh"]: correct += 1 correct_histro[int(obj_pred)] += 1 break #logging.debug("----------------") #logging.debug(correct_histro[4]) #logging.debug(pred_histro[4]) #logging.debug(gt_histro[4]) if n_gt: types = config["types"] reverse_types = {} # 建立一个反向的types for key in types.keys(): reverse_types[types[key]] = key #logging.info('Batch [%d/%d] mAP: %.5f' % (step, len(dataloader), float(correct / n_gt))) logging.info('Precision:%s' % str([reverse_types[i] +':'+ str(int(100 * correct_histro[i] / pred_histro[i])) for i in range(config["yolo"]["classes"]) ])) logging.info('Recall :%s' % str([reverse_types[i] +':'+ str(int(100 * correct_histro[i] / gt_histro[i])) for i in range(config["yolo"]["classes"])]))
def train(config): config["global_step"] = config.get("start_step", 0) is_training = False if config.get("export_onnx") else True # Load and initialize network net = ModelMain(config, is_training=is_training) net.train(is_training) # Optimizer and learning rate optimizer = _get_optimizer(config, net) lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=config["lr"]["decay_step"], gamma=config["lr"]["decay_gamma"]) # Set data parallel net = nn.DataParallel(net) net = net.cuda() # Restore pretrain model if config["pretrain_snapshot"]: logging.info("Load pretrained weights from {}".format( config["pretrain_snapshot"])) state_dict = torch.load(config["pretrain_snapshot"]) net.load_state_dict(state_dict) # Only export onnx # if config.get("export_onnx"): # real_model = net.module # real_model.eval() # dummy_input = torch.randn(8, 3, config["img_h"], config["img_w"]).cuda() # save_path = os.path.join(config["sub_working_dir"], "pytorch.onnx") # logging.info("Exporting onnx to {}".format(save_path)) # torch.onnx.export(real_model, dummy_input, save_path, verbose=False) # logging.info("Done. Exiting now.") # sys.exit() # Evaluate interface # if config["evaluate_type"]: # logging.info("Using {} to evaluate model.".format(config["evaluate_type"])) # evaluate_func = importlib.import_module(config["evaluate_type"]).run_eval # config["online_net"] = net # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]))) # DataLoader dataloader = torch.utils.data.DataLoader(COCODataset( config["train_path"], (config["img_w"], config["img_h"]), is_training=True), batch_size=config["batch_size"], shuffle=True, num_workers=32, pin_memory=True) # Start the training loop logging.info("Start training.") for epoch in range(config["epochs"]): for step, samples in enumerate(dataloader): images, labels = samples["image"], samples["label"] start_time = time.time() config["global_step"] += 1 # Forward and backward optimizer.zero_grad() outputs = net(images) losses_name = ["total_loss", "x", "y", "w", "h", "conf", "cls"] losses = [] for _ in range(len(losses_name)): losses.append([]) for i in range(3): _loss_item = yolo_losses[i](outputs[i], labels) for j, l in enumerate(_loss_item): losses[j].append(l) losses = [sum(l) for l in losses] loss = losses[0] loss.backward() optimizer.step() if step > 0 and step % 10 == 0: _loss = loss.item() duration = float(time.time() - start_time) example_per_second = config["batch_size"] / duration lr = optimizer.param_groups[0]['lr'] logging.info( "epoch [%.3d] iter = %d loss = %.2f example/sec = %.3f lr = %.5f " % (epoch, step, _loss, example_per_second, lr)) config["tensorboard_writer"].add_scalar( "lr", lr, config["global_step"]) config["tensorboard_writer"].add_scalar( "example/sec", example_per_second, config["global_step"]) for i, name in enumerate(losses_name): value = _loss if i == 0 else losses[i] config["tensorboard_writer"].add_scalar( name, value, config["global_step"]) # if step > 0 and step % 1000 == 0: # net.train(False) # _save_checkpoint(net.state_dict(), config) # net.train(True) _save_checkpoint(net.state_dict(), config) lr_scheduler.step() # net.train(False) _save_checkpoint(net.state_dict(), config) # net.train(True) logging.info("Bye~")
def train(config): device = config['device'] net = Yolo_v3(config) # Restore pretrain model if config["pretrain_snapshot"]: net.LoadPretrainedModel(config['pretrain_snapshot']) logging.info("Loaded checkpoint from {}".format( config["pretrain_snapshot"])) else: logging.info('No pretrained model to use.') # Optimizer and learning rate optimizer = _get_optimizer(config, net) lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=config["lr"]["decay_step"], gamma=config["lr"]["decay_gamma"]) # Set data parallel if device == 'cuda': net = nn.DataParallel(net) net = net.to(device) params = [ param for param in net.parameters() if len(param.size()) == 4 and param.view(param.size(0), -1).size(1) > 20 ] # YOLO loss with 3 scales yolo_losses = [] for i in range(3): yolo_losses.append( YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"], (config["img_w"], config["img_h"]), device)) with open(config['class_names'], 'r') as f: class_names = f.read().split('\n')[:-1] print(class_names) dataset = DAC_SDC_2020_Dataset(dataset_path=config['train_path'], class_names=class_names, img_w=config['img_w'], img_h=config['img_h'], is_training=True) dataloader = torch.utils.data.DataLoader( dataset=dataset, batch_size=config['train_batch_size'], shuffle=True) print('here') # Start the training loop logging.info("Start training.") for epoch in range(config["epochs"]): logging.info( f'~~~~~~~~~~~~~~~~~~~~~~~~~~~~ epoch = {epoch} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~' ) net.train() for step, samples in enumerate(dataloader): start_time = time.time() images, labels = samples["image"], samples["label"] images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = net(images) losses_name = ["total_loss", "x", "y", "w", "h", "conf", "cls"] losses = [] for _ in range(len(losses_name)): losses.append([]) for i in range(3): _loss_item = yolo_losses[i](outputs[i], labels) for j, l in enumerate(_loss_item): losses[j].append(l) losses = [sum(l) for l in losses] loss = losses[0] loss.backward() optimizer.step() if step > 0 and step % config['display_interval'] == 0: _loss = loss.item() duration = float(time.time() - start_time) example_per_second = config["train_batch_size"] / duration lr = optimizer.param_groups[0]['lr'] logging.info( "epoch [%.3d] iter = %d loss = %.6f example/sec = %.3f lr = %.5f " % (epoch, step, _loss, example_per_second, lr)) info = Evaluate(net, config) logging.info('net iou: ' + str(info['mean_iou']) + ' acc: ' + str(info['accuracy'])) info['state_dict'] = net.state_dict() info['epoch'] = epoch checkpoint_path = os.path.join(config["sub_working_dir"], 'epoch_' + str(epoch) + '_net.pth') torch.save(info, checkpoint_path) logging.info("Model checkpoint saved to %s" % checkpoint_path) lr_scheduler.step() logging.info("Bye~")