def loop_body(i, losses, predictions, predictions_lab): f = feature_map[i] l = labels[i] end_points = colorizer(f[:NUM_REF], tf.one_hot(l[:NUM_REF], NUM_CLUSTERS), f[NUM_REF:], l[NUM_REF:]) mean_losses = tf.reduce_mean(tf.reduce_mean(end_points['losses'], 2), 1) losses = tf.concat([losses, tf.expand_dims(mean_losses, 0)], 0) pred = end_points['predictions'] predictions = tf.concat([predictions, tf.expand_dims(pred, 0)], 0) predictions_lab = tf.concat([predictions_lab, tf.expand_dims(kmeans.labels_to_lab(pred), 0)], 0) return i+1, losses, predictions, predictions_lab
all_images = get_images(image_set) / 255. all_images_gray = all_images.mean(3) all_images_gray = np.array( [cv2.resize(img, (256, 256)) for img in all_images_gray]) all_images_gray = np.repeat(np.expand_dims(all_images_gray, -1), 3, -1) # load model with tf.Graph().as_default() as graph: saver = tf.train.import_meta_graph(graph_path) images = graph.get_tensor_by_name('images:0') features = graph.get_tensor_by_name('features:0') annotations = tf.placeholder(tf.float32, shape=[3, 32, 32, n_colors]) end_points = colorizer(features[0, 0:3], annotations, features[0, 3:4]) predictions = end_points['predictions'] temperature = end_points['temperature'] def apply_mask(image, mask): return mask[:, :, 0:1] * image + (np.expand_dims( mask[:, :, 1:], -1) * colors[1:].reshape(1, 1, -1, 3)).sum(2) cv2.imshow('Reference frame', apply_mask(all_images[0], annotation_large)) with tf.Session(graph=graph) as sess: saver.restore(sess, model_path) _annotations = np.expand_dims(annotation, 0).repeat(3, 0) for t in xrange(1, all_images.shape[0]): _images = all_images_gray[[max(t - 3, 0), max(t - 2, 0), t - 1, t]] _predictions = sess.run(