コード例 #1
0
ファイル: framework.py プロジェクト: yugenlgy/captcha_trainer
    def _build_model(self):
        if self.network == CNNNetwork.CNN5:
            x = CNN5(inputs=self.inputs, utils=self.utils).build()

        elif self.network == CNNNetwork.ResNet:
            x = ResNet50(inputs=self.inputs, utils=self.utils).build()

        else:
            print('This cnn neural network is not supported at this time.')
            sys.exit(-1)

        shape_list = x.get_shape().as_list()
        self.seq_len = tf.fill([tf.shape(x)[0]], shape_list[1], name="seq_len")

        if self.recurrent == RecurrentNetwork.LSTM:
            recurrent_network_builder = LSTM(self.utils, x, self.seq_len)
        elif self.recurrent == RecurrentNetwork.BLSTM:
            recurrent_network_builder = BLSTM(self.utils, x, self.seq_len)
        elif self.recurrent == RecurrentNetwork.GRU:
            recurrent_network_builder = GRU(x, self.seq_len)
        elif self.recurrent == RecurrentNetwork.SRU:
            recurrent_network_builder = SRU(x, self.seq_len)
        elif self.recurrent == RecurrentNetwork.BSRU:
            recurrent_network_builder = BSRU(self.utils, x, self.seq_len)
        else:
            print(
                'This recurrent neural network is not supported at this time.')
            sys.exit(-1)

        outputs = recurrent_network_builder.build()

        # Reshaping to apply the same weights over the time_steps
        outputs = tf.reshape(outputs, [-1, NUM_HIDDEN * 2])
        with tf.variable_scope('output'):
            # tf.Variable
            weight_out = tf.get_variable(
                name='weight',
                shape=[
                    outputs.get_shape()[1] if self.network == CNNNetwork.ResNet
                    else NUM_HIDDEN * 2, NUM_CLASSES
                ],
                dtype=tf.float32,
                initializer=tf.truncated_normal_initializer(stddev=0.1),
                # initializer=tf.glorot_uniform_initializer(),
                # initializer=tf.contrib.layers.xavier_initializer(),
                # initializer=tf.truncated_normal([NUM_HIDDEN, NUM_CLASSES], stddev=0.1),
            )
            biases_out = tf.get_variable(name='biases',
                                         shape=[NUM_CLASSES],
                                         dtype=tf.float32,
                                         initializer=tf.constant_initializer(
                                             value=0, dtype=tf.float32))
            # [batch_size * max_timesteps, num_classes]
            logits = tf.matmul(outputs, weight_out) + biases_out
            # Reshaping back to the original shape
            logits = tf.reshape(logits, [tf.shape(x)[0], -1, NUM_CLASSES])
            # Time major
            predict = tf.transpose(logits, (1, 0, 2), "predict")
            self.predict = predict
コード例 #2
0
ファイル: core.py プロジェクト: zzzz123321/captcha_trainer
    def _build_model(self):

        """选择采用哪种卷积网络"""
        if self.network == CNNNetwork.CNN5:
            x = CNN5(model_conf=self.model_conf, inputs=self.inputs, utils=self.utils).build()

        elif self.network == CNNNetwork.CNNX:
            x = CNNX(model_conf=self.model_conf, inputs=self.inputs, utils=self.utils).build()

        elif self.network == CNNNetwork.ResNetTiny:
            x = ResNetTiny(model_conf=self.model_conf, inputs=self.inputs, utils=self.utils).build()

        elif self.network == CNNNetwork.ResNet50:
            x = ResNet50(model_conf=self.model_conf, inputs=self.inputs, utils=self.utils).build()

        elif self.network == CNNNetwork.DenseNet:
            x = DenseNet(model_conf=self.model_conf, inputs=self.inputs, utils=self.utils).build()

        else:
            raise ValueError('This cnn neural network is not supported at this time.')

        """选择采用哪种循环网络"""

        # time_major = True: [max_time_step, batch_size, num_classes]
        tf.compat.v1.logging.info("CNN Output: {}".format(x.get_shape()))

        self.seq_len = tf.fill([tf.shape(x)[0]], tf.shape(x)[1], name="seq_len")
        # self.labels_len = tf.fill([BATCH_SIZE], 12, name="labels_len")
        if self.recurrent == RecurrentNetwork.NoRecurrent:
            self.recurrent_network_builder = None
        elif self.recurrent == RecurrentNetwork.LSTM:
            self.recurrent_network_builder = LSTM(model_conf=self.model_conf, inputs=x, utils=self.utils)
        elif self.recurrent == RecurrentNetwork.BiLSTM:
            self.recurrent_network_builder = BiLSTM(model_conf=self.model_conf, inputs=x, utils=self.utils)
        elif self.recurrent == RecurrentNetwork.GRU:
            self.recurrent_network_builder = GRU(model_conf=self.model_conf, inputs=x, utils=self.utils)
        elif self.recurrent == RecurrentNetwork.BiGRU:
            self.recurrent_network_builder = BiGRU(model_conf=self.model_conf, inputs=x, utils=self.utils)
        elif self.recurrent == RecurrentNetwork.LSTMcuDNN:
            self.recurrent_network_builder = LSTMcuDNN(model_conf=self.model_conf, inputs=x, utils=self.utils)
        elif self.recurrent == RecurrentNetwork.BiLSTMcuDNN:
            self.recurrent_network_builder = BiLSTMcuDNN(model_conf=self.model_conf, inputs=x, utils=self.utils)
        elif self.recurrent == RecurrentNetwork.GRUcuDNN:
            self.recurrent_network_builder = GRUcuDNN(model_conf=self.model_conf, inputs=x, utils=self.utils)
        else:
            raise ValueError('This recurrent neural network is not supported at this time.')

        logits = self.recurrent_network_builder.build() if self.recurrent_network_builder else x
        if self.recurrent_network_builder and self.model_conf.loss_func != LossFunction.CTC:
            raise ValueError('CTC loss must use recurrent neural network.')

        """输出层,根据Loss函数区分"""
        with tf.keras.backend.name_scope('output'):
            if self.model_conf.loss_func == LossFunction.CTC:
                self.outputs = FullConnectedRNN(model_conf=self.model_conf, mode=self.mode, outputs=logits).build()
            elif self.model_conf.loss_func == LossFunction.CrossEntropy:
                self.outputs = FullConnectedCNN(model_conf=self.model_conf, mode=self.mode, outputs=logits).build()
            return self.outputs