コード例 #1
0
ファイル: main.py プロジェクト: BearPolarny/LetterRecognition
def moja():
    bias, weight = load('net82.9_k2.pkl')

    net = Network([int(3136 / krok), 30, 40, 36], bias, weight)
    czas = time.localtime(time.time())
    strCzas = str(czas.tm_hour) + ':' + str(czas.tm_min) + ':' + str(
        czas.tm_sec)
    print('Witam o ' + strCzas, end='')
    if czas.tm_hour < 5:
        print(' Późno już... Może kawy?')
    elif czas.tm_hour < 10:
        print('Jest dość wcześnie. Nie śpisz już, czy jeszcze? Może kawy?')
    else:
        print()

    czas = time.time()

    net.stochastic_gradient_descent(train, 100, 10, 6.0, test)

    czas2 = time.time()
    print('Nauczone. Czas na egzammin')

    evaluation = net.evaluate(test[1000:])

    czas3 = time.time()

    print(
        str(evaluation) + ' out of ' + str(len(test[1000:])) + ', it\'s ' +
        str(100 * round(evaluation / len(test[1000:]), 2)) + '%' +
        '\n Training duration: ' + str(round(czas2 - czas, 2)) +
        '\n Eval duration: ' + str(round(czas3 - czas2, 2)))

    net.save()
コード例 #2
0
def predict(test_data):
    """
    Funkcja pobiera macierz przykladow zapisanych w macierzy X o wymiarach NxD i zwraca wektor y o wymiarach Nx1,
    gdzie kazdy element jest z zakresu {0, ..., 35} i oznacza znak rozpoznany na danym przykladzie.
    :param test_data: macierz o wymiarach NxD
    :return: wektor o wymiarach Nx1
    """
    krok = 1

    bias, weight = load('net.pkl')
    net = Network([int(3136 / krok), 30, 40, 36], bias, weight)

    data_x = []

    for main_data in test_data:
        data_x.append(main_data[::krok])

    x = []

    for dx in data_x:
        x.append(np.array(dx).reshape((len(dx), 1)))

    values = net.predict(x)
    print(values)
    values = np.reshape(values, (len(values), 1))
    print(np.shape(values))
    return values
コード例 #3
0
 def trigger_action_use_another_nw(self):
     """Позволяет выбрать другую полносвязную нейросеть"""
     filename, _ = QtWidgets.QFileDialog.getOpenFileName(
         self, "Открыть файл .json", "../data/networks/nw1.json",
         "Json Files (*.json)")
     if filename == "":
         return
     self.network1 = network.load(filename)
コード例 #4
0
def get_model(load):
    """
    Get the model.
    """

    if load:
        logging.info("Loading model from %s", load)
        return network.load(load)
    else:
        logging.info("Building a new model")
        return network.build_model()
コード例 #5
0
ファイル: performace.py プロジェクト: wannaphong/vietseg
def _make_hyp_ref(RUN):
    "Make human sentences and machine sentences"
    JSON = '../var/30hidden-30epochs-10batch-0.5eta-5.0lambda-7window-100shape-{}run.net'.format(RUN)
    net = network.load(JSON)
    
    def classify(token_list):
        "Classify a list of token to compare with human's segmentation"
        result = []
        sen_vec = make_vec(token_list)
        for x in sen_vec:
            result.append(_get_iob(net.feedforward(x)))
        return result
    
    test_list  = get_files('test')
    test_sent  = get_sentences(test_list, RUN)
    sents_ref = [_make_words(sent, tags) for sent, tags in test_sent]
    sents_hyp = [_make_words(sent, classify(sent)) for sent, _ in test_sent]
    return sents_ref, sents_hyp
コード例 #6
0
def main():
    args = sys.argv

    if len(args) <= 2 or not args[1].isdigit():
        print("Usage: python validate.py EXAMPLE_ID NETWORK_FILE")
        exit()

    ex_id = args[1]
    directory = 'validation/' + ex_id + '/'
    dates = np.loadtxt(directory + 'dates')

    flux = np.load(directory + 'flux.npy')
    flux_err = np.load(directory + 'flux_err.npy')

    #event = LightCurve()
    #curve_of_interest = 4859
    #event.load_curve(dates, flux[curve_of_interest], flux_err[curve_of_interest])
    #return draw_plot(event)

    num_microlensing = 0
    ml_events = []
    network = load(args[2])

    for i in range(len(flux)):
        lightcurve = LightCurve()
        lightcurve.load_curve(dates, flux[i], flux_err[i])
        inputs = lightcurve.calculate_inputs()
        activations = network.activations(inputs)
        if np.argmax(activations[3]) == 0:
            num_microlensing += 1
            ml_events.append((i, activations[3][0][0]))
        percent = round(100 * num_microlensing / (i + 1), 2)
        if i == len(flux) - 1:
            print("\r Validation complete, result: Error " + str(percent) +
                  "% (" + str(num_microlensing) + " / " + str(i + 1) + ")")
            print("Index, Activation")
            for ind, act in sorted(ml_events, key=lambda x: x[1]):
                print(str(ind) + ", " + str(round(act, 2)))
        else:
            print(" " + str(num_microlensing) + " / " + str(i + 1) +
                  " (Error " + str(percent) + "%)",
                  end="\r")
        sys.stdout.flush()
コード例 #7
0
def neuralNetwork(data):
    """
	Calculates the output of NN for particular normalized BGR / YUV values
	VAlues can be changed : Threshold for Red, yellow and water

	Input : list of normalized BGR or YUV values

	output : 
	"""
    net1 = network.load("nnet")
    a = net1.feedforward(data)
    a = a / sum(a)
    a = np.around(a, decimals=3)
    # print "Probabilities : ",a
    if a[0] > 0.72:
        a = (1, 0, 0)  #Red
    elif a[1] > 0.72:
        a = (0, 1, 0)  #yellow
    else:
        a = (0, 0, 1)  #water
    return a
コード例 #8
0
def neuralNetwork(data):
	"""
	Calculates the output of NN for particular normalized BGR / YUV values
	VAlues can be changed : Threshold for Red, yellow and water

	Input : list of normalized BGR or YUV values

	output : 
	"""
	net1 = network.load("nnet")
	a = net1.feedforward(data)
	a = a/sum(a)
	a = np.around(a, decimals=3)
	# print "Probabilities : ",a
	if a[0] > 0.72 :
		a = (1,0,0)  #Red
	elif a[1] > 0.72:
		a = (0,1,0)  #yellow
	else :
		a = (0,0,1)  #water
	return a
コード例 #9
0
 def __init__(self):
     QtWidgets.QMainWindow.__init__(self)
     self.ui = Ui_MainWindow()
     self.ui.setupUi(self)
     self.ui.buttonNetwork1.clicked.connect(self.handle_button_network1)
     self.ui.buttonNetwork2.clicked.connect(self.handle_button_network2)
     self.ui.actionOpen.triggered.connect(self.trigger_action_open)
     self.ui.actionAbout.triggered.connect(self.trigger_action_about)
     self.ui.actionUseAnotherNW.triggered.connect(
         self.trigger_action_use_another_nw)
     self.ui.actionRetrainNW.triggered.connect(
         self.trigger_action_retrain_nw1)
     self.ui.actionUse_network_1.triggered.connect(self.trigger_action_nw1)
     self.ui.actionUse_network_2.triggered.connect(self.trigger_action_nw2)
     self.ui.actionSaveImage.triggered.connect(
         self.trigger_action_save_image)
     self.ui.actionUseAnotherCNN.triggered.connect(
         self.trigger_action_use_another_cnn)
     self.network1 = network.load("../data/networks/network_30ep.json")
     self.network2 = cnn.ConvolutedNeuralNetwork(
         cnn.load("../data/networks/model_10epochs.h5"))
     self.image_filename = ""
     self.ui.tabWidget.setCurrentIndex(0)
     self.dialog = SecondaryWindow()
コード例 #10
0
ファイル: main.py プロジェクト: kid-a/pyhtm2
        try: os.mkdir("usps/" + directory)
        except: pass

        save(htm, "usps/" + directory + "/")

        print "*** Summary **"
        print "Number of training sequences generated:"
        print " * Entry layer:        ", seq_count[network.ENTRY]
        print " * Intermediate layer: ", seq_count[network.INTERMEDIATE]
        print " * Output layer:       ", seq_count[network.OUTPUT]
        print "Training completed in ", time.time() - t0, "seconds"
        
    elif choice == 4:
        print "Enter the directory:"
        directory = raw_input()
        htm = load(directory)
        
    else:
        exit(0)

    print "*** HTM Testing ***"
    print "1. Test HTM on single input"
    print "2. Test HTM on USPS train100 training set"
    print "3. Test HTM on USPS train1000 training set"
    print "4. Test HTM on USPS full test set (over 2000 elements)"
    print "5. Quit"

    choice = int(raw_input())

    t0 = time.time()
コード例 #11
0
ファイル: app.py プロジェクト: sushuiyuzhou/nndl
import flask
from flask import Flask, render_template, request, url_for

import base64
import numpy as np
import cv2
import network

# Initialize the useless part of the base64 encoded image.
init_Base64 = 21

NET = network.load("trained.out")

# Initializing new Flask instance. Find the html template in "templates".
app = flask.Flask(__name__, template_folder='templates')

# @app.route('/')
# def hello_world():
#     return 'Hello, World!'


# First route : Render the initial drawing template
@app.route('/')
def home():
    return render_template('draw.html')


# Second route : Use our model to make prediction - render the results page.
@app.route('/predict', methods=['POST'])
def predict():
    draw = request.form['url']
コード例 #12
0
# sys.path.append("/home/pi/Documents/Github/Smart-Car/source/component")
sys.path.append("../config")
sys.path.append("../component")
# import move
import network
import image_preprocess as imgprocess
import common as common_config

THRESHOLD = 220

## Main function
# major variables
cap = cv2.VideoCapture(1)
ret, frame = cap.read()
# mo = move.Move()
net = network.load("../config/result/0316-93%")


## Get Frame part
#Continually updates the frame
class GetFrameThread(Thread):
    def __init__(self):
        Thread.__init__(self)
        self.thread_stop = False

    def run(self):
        global ret, frame
        while not self.thread_stop:
            ret, frame = cap.read()

    def stop(self):
コード例 #13
0
ファイル: predict.py プロジェクト: hslee1539/rc-ai
import data
import network
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
import PIL.Image as pilimg
import cv2

## 맥북 실행법 -> 터미널에서 python3 predict.py 직접 실행

net = network.load("my-net-v1")

capture = cv2.VideoCapture(0)
capture.set(cv2.CAP_PROP_FRAME_WIDTH, 480)
capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 640)


def do_thr(t):
    if (t > 0.005):
        return 1.0
    else:
        return 0.0


do_thr = np.vectorize(do_thr)

while cv2.waitKey(33) < 0:
    ret, frame = capture.read()
    if frame is None:
        continue
    origen = np.copy(frame)
コード例 #14
0
ファイル: test.py プロジェクト: Sirozu/Prceptrone
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
training_data = list(training_data)

import network
# три слоя 784 - тк картинка 30-прост 10 - выход
net = network.Network([784, 30, 10])
# 7 эпох
net.Train(training_data,
          30,
          10,
          3.0,
          0.1,
          test_data=test_data,
          early_stopping_n=3)
#net.save("net.dat")

net = network.load("net.dat")

import numpy as np
count = 0
total = 0
for x, d in validation_data:
    total += 1
    y = net.feedforward(x)
    if (d != np.argmax(y)):
        count += 1
        #print("{} isn't {}".format(np.argmax(y), d))
print(count)
print(total)
print("Accurate : {}".format(1 - count / total))
コード例 #15
0
import cv2
import cPickle
import sys

sys.path.append("../component")
sys.path.append("../config")
import network
import common as common_config

THRESHOLD = 220
DATA_DIR = "../data/expanded/"
available_type = [".gif", ".jpg", ".jpeg", ".bmp", ".png"]
INPUT_SIZE = common_config.NETWORK_INPUT_SIZE
OUTPUT_SIZE = 3

net = network.load("../config/result/0317-95%")

f = open(DATA_DIR + "data.pkl", 'rb')
training_data, validation_data, te_d = cPickle.load(f)
f.close()
test_inputs = [np.reshape(x, (INPUT_SIZE, 1)) for x in te_d[0]]
test_data = zip(test_inputs, te_d[1])

count = 0
for td in test_data:
    tr = np.argmax(net.feedforward(td[0]))
    # print tr, td[1]
    if tr == td[1]:
        count += 1
    else:
        print tr, td[1]
コード例 #16
0
import pdb

import mnist_loader
from network import load
from plotter import plot_mnist_digit
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
#for data in training_data:
#	plot_mnist_digit(data[0])
#	#pdb.set_trace()
training_data_2 = [data for data in training_data if data[1][4] == 1]
pdb.set_trace()
print 'data loaded'
net = load('network.json')
net.generated_data  = training_data[0][0]
net.SGD(training_data_2, 30, 10, 0.5, evaluation_data=test_data, monitor_evaluation_accuracy=True)
コード例 #17
0
ファイル: test_accuracy.py プロジェクト: jimchenhub/Smart-Car
import numpy as np
import cv2
import cPickle
import sys
sys.path.append("../component")
sys.path.append("../config")
import network
import common as common_config

THRESHOLD = 220
DATA_DIR = "../data/expanded/"
available_type = [".gif", ".jpg", ".jpeg", ".bmp", ".png"]
INPUT_SIZE = common_config.NETWORK_INPUT_SIZE
OUTPUT_SIZE = 3

net = network.load("../config/result/0317-95%")

f = open(DATA_DIR+"data.pkl", 'rb')
training_data, validation_data, te_d = cPickle.load(f)
f.close()
test_inputs = [np.reshape(x, (INPUT_SIZE, 1)) for x in te_d[0]]
test_data = zip(test_inputs, te_d[1])

count = 0
for td in test_data:
    tr = np.argmax(net.feedforward(td[0]))
    # print tr, td[1]
    if tr == td[1]:
        count += 1
    else:
        print tr, td[1]
from train_test_helper_funcs import get_train_test_split_2, get_test_data, get_prediction, compute_save_prediction_results_2, quantize_float
import train_test_helper_funcs
import time

if __name__ == '__main__':
    train_pids_list, test_pids_list = get_train_test_split_2()

    fold = 1
    avg_mape = 0

    for test_pids in test_pids_list:
        print('{}-fold cross validation fold {}'.format(len(test_pids_list), fold))

        nn_model_save_filename = train_test_helper_funcs.neural_network_model_save_filename.strip().split('.')[0] + '_fold_' + str(fold) + '_.json'

        nn = network.load(nn_model_save_filename)

        print('DEBUG - Computing and saving prediction results...')

        ini_time = time.time()

        mape = compute_save_prediction_results_2(nn, test_pids, fold)
        avg_mape += mape
        print('DEBUG - Computed and saved prediction results to ' + train_test_helper_funcs.prediction_results_filename)

        print('INFO - Execution time for computing and saving prediction results: ' + str(quantize_float(time.time() - ini_time)) + ' s')

        print('INFO - Mean Absolute percentage error (MAPE) = ' + str(mape))

        if fold == len(test_pids_list):
            # print('DEBUG - Getting test data...')
コード例 #19
0
'''
TODO:
- display where the user is drawing
- average pixels to create greyscale values
- increase "width" of user's cursors when drawing
'''

root = Tk()

K = 3

canvas = Canvas(root, width=28 * K, height=28 * K)

arr = np.zeros((28, 28), dtype=np.float32)

net = network.load('network.json')


def click_move(event):
    #print(event.x, event.y)
    #print(canvas.winfo_width(), canvas.winfo_height()
    arr[event.y // K][event.x // K] = 1


def reset(event):
    global arr
    arr = np.zeros((28, 28), dtype=np.float32)


def display(event):
    print(arr)
コード例 #20
0
import sys
from PIL import Image
import numpy as np

import network

net = network.load('shape_detection_network.json')

with Image.open(sys.argv[1]) as image:
    data = np.array(image.getdata(), dtype=np.float32).reshape((625, 1)) / 255.

lookup = ['circle', 'square', 'star', 'triangle']

z = net.feedforward(data)
print(z)
print(lookup[np.argmax(z)])
コード例 #21
0
ファイル: main.py プロジェクト: khalilmansouri/ann-mnist
    previous_y = y


root = tk.Tk("ANN")
backboard = tk.LabelFrame(root, text="Blackboard")
backboard.pack(fill="both", expand="yes")
canvas = tk.Canvas(backboard,
                   height=280,
                   width=280,
                   bg="black",
                   bd=0,
                   cursor="circle")
canvas.bind("<Motion>", tell_me_where_you_are)
canvas.bind("<B1-Motion>", draw_from_where_you_are)
canvas.pack()
net = NN.load("trainedNet")
resultLabel = tk.StringVar()
probaLabel = tk.StringVar()


def guess(imgData):
    global net
    return net.feedforward(imgData)


def getter(event):
    global root, canvas
    margin = 3
    x = root.winfo_rootx() + canvas.winfo_x() + margin
    y = root.winfo_rooty() + canvas.winfo_y() + margin
    x1 = x + canvas.winfo_width() - margin * 2
コード例 #22
0
x_0 = np.matrix([0, 0, np.pi, 0]).T  # initial state
x_f = np.matrix([0, 0, 0, 0]).T  # final state
mpc_N = 200
mpc_mode = False
online_training = False

# vectors to keep track of results
x_vect = np.matrix(np.zeros([config.num_states, mpc_N + 1]))
x_vect[:, 0] = x_0
x_pred = x_vect.copy()
u_vect = np.matrix(np.zeros([config.num_inputs, mpc_N]))
dx_vect = np.matrix(np.zeros([config.num_states, mpc_N]))
cost_vect = np.zeros([mpc_N])

# load the neural network
net = network.load(None)

# MPC main loop
for i in range(0, mpc_N):

    print('Iteration: {0}'.format(i))
    (x_bar, u_bar, cost) = ddp.run(x_0, x_f)

    if (mpc_mode):
        # interact with system
        u = u_bar[:, 0]
        x = x_bar[:, 0]

        dx = dynamics.nonlinear(x, u)
        x_0 += dx * config.dt
コード例 #23
0
###############################################################################
# Model application
###############################################################################

import sys
import os
import network
from vec4net import make_vec
import numpy as np

# Replace this with your model's result
JSON = '../var/30hidden-30epochs-10batch-0.5eta-5.0lambda-7window-100shape-3run.net'
net = network.load(JSON)


def _get_iob(arr):
    d = {0: 'i', 1: 'o', 2: 'b'}
    n = np.argmax(arr)
    return d[n]


def _classify(token_list):
    "Classify a list of token"
    result = []
    sen_vec = make_vec(token_list)
    for x in sen_vec:
        result.append(_get_iob(net.feedforward(x)))
    return result


def _make_words(token_list, iob_list):
コード例 #24
0
def ensemble(networks=None, data=None, test_names=None):
    """

    Classifies the data using the provided networks.

    """

    fileName = './Ensemble/testClassifications.pkl'
    nets = []
    classification = []

    if data is None:

        t = file("./Ensemble/correctTestLabels.pkl", 'rb')
        test_y, test_names = cPickle.load(t)
        t.close()

    else:
        test_y = data[1].eval()

        t = file("./Ensemble/correctTrainingLabels.pkl", 'wb')
        cPickle.dump((test_y, test_names), t)
        t.close()


    if networks is None:

        f = file(fileName, 'rb')
        classification = cPickle.load(f)
        f.close()

    else:
        for name in networks:
            net = network.load(name)
            #nets.append(net)

            mbs = 1
            net.set_mini_batch_size(mbs)

            classification.append(net.classify(data))

            acc = net.evaluate(data)
            print "loaded {0}, accuracy: {1}".format(name, acc)


        f = file(fileName, 'wb')
        cPickle.dump(classification, f)
        f.close()

    acc = np.mean(accuracy_max(classification, test_y))
    print "accuracy_max:                                 {0:.3%}".format(acc)

    acc = np.mean(accuracy_maxVote(classification, test_y))
    print "accuracy_max:                                 {0:.3%}".format(acc)

    acc = np.mean(accuracy_maxVote_ultmax(classification, test_y))
    print "accuracy_max:                                 {0:.3%}".format(acc)

    acc = np.mean(accuracy_maxVote_ultmax_probcast(classification, test_y))
    print "accuracy_max:                                 {0:.3%}".format(acc)

    acc = np.mean(accuracy_maxVote_ultmax_probcast_doubtfilter(classification, test_y))
    print "accuracy_max:                                 {0:.3%}".format(acc)
コード例 #25
0
ファイル: vietseg.py プロジェクト: manhtai/vietseg
###############################################################################
# Model application
###############################################################################

import sys
import os
import network
from vec4net import make_vec
import numpy as np

# Replace this with your model's result
JSON = '../var/30hidden-30epochs-10batch-0.5eta-5.0lambda-7window-100shape-3run.net'
net = network.load(JSON)


def _get_iob(arr):
    d = {0: 'i', 1: 'o', 2: 'b'}
    n = np.argmax(arr)
    return d[n]

def _classify(token_list):
    "Classify a list of token"
    result = []
    sen_vec = make_vec(token_list)
    for x in sen_vec:
        result.append(_get_iob(net.feedforward(x)))
    return result

def _make_words(token_list, iob_list):
    "Make segmented words from token list and corresponding iob list"
コード例 #26
0
# sys.path.append("/home/pi/Documents/Github/Smart-Car/source/component")
sys.path.append("../config")
sys.path.append("../component")
# import move
import network
import image_preprocess as imgprocess
import common as common_config

THRESHOLD = 220

## Main function
# major variables
cap = cv2.VideoCapture(1)
ret, frame = cap.read()
# mo = move.Move()
net = network.load("../config/result/0316-93%")


## Get Frame part
#Continually updates the frame
class GetFrameThread(Thread):
    def __init__(self):  
        Thread.__init__(self)
        self.thread_stop = False  
   
    def run(self):
        global ret, frame
        while not self.thread_stop:  
            ret, frame = cap.read()

    def stop(self):  

# this is not exactly the same because it returns an array of shape (n,1)
def vectorize_word2(word):

    v = np.zeros((MAX_WORD_LENGTH * 26, 1), dtype=np.uint8)

    for i, c in enumerate(word.lower()):

        # print(i, c, i*26+(ord(c)-ord('a')))
        v[i * 26 + (ord(c) - ord('a'))] = 1

    return v


net = network.load('language_detection_network.json')

words = input('enter a string of words without special characters: ').split()

with open('words.json') as f:
    lookup = json.load(f)['lookup']

count = np.zeros(11)
for word in words:

    if len(word) > MAX_WORD_LENGTH:
        print(word, 'is too long.')
        continue

    z = net.feedforward(vectorize_word2(word))
コード例 #28
0
import numpy as np
import network
from train_test_helper_funcs import get_train_test_split, get_test_data, get_prediction, compute_save_prediction_results, quantize_float
import train_test_helper_funcs
import time

if __name__ == '__main__':
    train_pids, test_pids = get_train_test_split()

    nn = network.load(train_test_helper_funcs.neural_network_model_save_filename)

    print('DEBUG - Computing and saving prediction results...')

    ini_time = time.time()

    mape = compute_save_prediction_results(nn, test_pids)
    print('DEBUG - Computed and saved prediction results to ' + train_test_helper_funcs.prediction_results_filename)

    print('INFO - Execution time for computing and saving prediction results: ' + str(quantize_float(time.time() - ini_time)) + ' s')

    print('INFO - Mean Absolute percentage error (MAPE) = ' + str(mape))

    # print('DEBUG - Getting test data...')
    test_input, test_result = get_test_data(test_pids)
    # print('DEBUG - Got test data...')

    print('Actual SBP = ' + str(test_result))
    prediction = get_prediction(nn, test_input)
    print('Predicted SBP = ' + str(prediction))
    print('INFO - Absolute Percentage error = ' + str(quantize_float(abs((prediction - test_result) / test_result * 100))))
コード例 #29
0
                return bestScore, bestMove
    return bestScore, bestMove


def getComputerMove(board, computerTile):
    # Given a board and the computer's tile, determine where to
    # move and return that move as a [x, y] list.
    bestScore, bestMove = abNegaMax(board, computerTile, 0, 3, -INFINITY,
                                    INFINITY)
    if isOnCorner(bestMove[0], bestMove[1]):
        return bestMove
    #make another decision
    validList = getValidMoves(board, computerTile)
    for move in validList:
        if isOnCorner(move[0], move[1]):
            return move

    return bestMove


def checkForQuit():
    for event in pygame.event.get((QUIT, KEYUP)):  # event handling loop
        if event.type == QUIT or (event.type == KEYUP
                                  and event.key == K_ESCAPE):
            pygame.quit()
            sys.exit()


if __name__ == '__main__':
    Network = network.load("network.json")
    main()
コード例 #30
0
def load():
    """
    load model
    """
    return network.load()