コード例 #1
0
def main():
    logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
    logging.info('Starting...')
    input_args = get_predict_input_args()

    image_path = input_args.image_path
    checkpoint_path = input_args.checkpoint_folder + '/' + input_args.checkpoint_file
    top_k = input_args.top_k
    show_p = input_args.show_probs
    number_of_classes = input_args.number_of_classes
    category_names_path = input_args.category_names

    with open(category_names_path, 'r') as f:
        category_names = json.load(f)

    device = 'cpu'
    if input_args.gpu and torch.cuda.is_available:
        device = 'cuda'

    model, class_from_index, arch = load_checkpoint(checkpoint_path, device,
                                                    number_of_classes)
    model = freeze_layers(model, arch)
    predict(image_path,
            model,
            device,
            category_names,
            class_from_index,
            top_k,
            show_probs=show_p)
コード例 #2
0
def run(arg, f1, f2):
	if arg == '--train':
		agent = objects.Agent(14, 2)
           	fight_data = construct.fights('../xml_data/schedule.xml')
            	write_file(fight_data, TRAIN_FILE_NAME)
	        network.train(agent)
	elif arg == '--predict':
		agent = objects.Agent(14, 2)
		fight_data = construct.fights('../xml_data/schedule.xml')
		write_file(fight_data, FIGHT_FILE_NAME)
		network.predict(agent, f1.replace(" ", ""), f2.replace(" ", ""))
	print "Arguments Processed!"
コード例 #3
0
 def __open(self):
     self.file_opt = options = {}
     options['defaultextension'] = '.jpg'
     options['filetypes'] = [('image files', '.jpg'), ('all files', '.*')]
     options['initialdir'] = 'C:\\'
     self.file_path = tkFileDialog.askopenfilename(**self.file_opt)
     matrix = network.predict(self.file_path)
     self.game.start_puzzle = matrix
     self.game.start()
     self.__clear_answers()
コード例 #4
0
    def post(self):
        try:
            id = None
            global counter
            with counter.get_lock():
                id = counter.value
                counter.value += 1
            parser = reqparse.RequestParser()
            parser.add_argument("sequence", required=True)
            parser.add_argument("sens", required=True)
            parser.add_argument("num_matches", required=True)

            args = parser.parse_args()
            seq = args["sequence"]
            sens = float(args["sens"])
            num_matches = int(args["num_matches"])
            # data["sequence"].append(seq)
            logging.info("Seq " + seq + " with id " + str(id) + " from ip " +
                         request.remote_addr)
            parse(seq, id)
            process(id, seq)
            p = Process(target=predict(id))
            p.start()
            # print("started")
            p.join()
            # print("joined")
            # predict(id)
            dot_bracket_string = to_string(id)
            print(dot_bracket_string)
            aligned_dot = align_sequence(seq, dot_bracket_string, sens,
                                         num_matches,
                                         5)  # Maybe make threshold a parameter
            file1 = open("./pics/" + str(id) + "_pred.png", "rb")
            img1 = file1.read()
            file2 = open("./pics/" + str(id) + "_binarized.png", "rb")
            img2 = file2.read()
            # resp = make_response(json.dumps(id), 200)
            resp = make_response(json.dumps({"id": id, "seq" : aligned_dot, "raw_dot" : dot_bracket_string, "img1" : b64encode(img1).decode('utf-8'),\
             "img2" : b64encode(img2).decode('utf-8')}), 200)
            # id+=1
            resp.headers.extend({
                'Access-Control-Allow-Headers': '*',
                'Access-Control-Allow-Credentials': 'true',
                'Access-Control-Allow-Origin': '*'
            })
            return resp
        except Exception as e:
            print(e)
            resp = make_response(json.dumps({"id": id, "seq": "Error"}), 200)
            resp.headers.extend({
                'Access-Control-Allow-Headers': '*',
                'Access-Control-Allow-Credentials': 'true',
                'Access-Control-Allow-Origin': '*'
            })
            return resp
コード例 #5
0
def predict(model, text):
    """
    predict
    """
    model_text, topic_dict = \
        preprocessing_for_one_conversation(text.strip(), topic_generalization=True)

    if isinstance(model_text, unicode):
        model_text = model_text.encode('utf-8')

    response = network.predict(model, model_text)

    topic_list = sorted(topic_dict.items(),
                        key=lambda item: len(item[1]),
                        reverse=True)
    for key, value in topic_list:
        response = response.replace(key, value)

    return response
コード例 #6
0
ファイル: main.py プロジェクト: ocallam6/STLF-Eirgrid
	'%d-%b-%Y')-datetime.timedelta(days=1),'%d-%b-%Y')
clean_csv(date_begin,date_end)
df_test=datas(date_begin,date_end)
'''
#===========================================================================
'''
data_split for analysis
predict_data for real life
'''
#---------------------------------------------------------------------------
#df_train,df_test=data_split(df_train)
#tempmax=23
#df_train,df_predict=predict_data(df_train,date_end,date_predict,tempmax_predict)
#===========================================================================
model = model_build(df_train, epochs=1000, batch_size=32)
model.load_weights("weights.best.hdf5")
model.compile(optimizer='adam',
              loss='mean_squared_error',
              metrics=[keras.losses.mean_absolute_percentage_error])
#===========================================================================
predictions = predict(model, df_test)
df_test.drop(df_test.head(24 * 7 + 1).index, inplace=True)
df_test['Predicted'] = predictions.values
#===========================================================================
plot_values(df_test)
errors(df_test)
#===========================================================================
print("          RUNTIME       \n --- %s seconds ---" %
      (time.time() - start_time))
#===========================================================================
コード例 #7
0
ファイル: test_yolo.py プロジェクト: elvircrn/manibus
    tf.enable_eager_execution()
    cap = cv2.VideoCapture(0)

    net.initialize_flags(model_dir='data')
    estimator = net.get_estimator()
    cv2.startWindowThread()
    while True:
        # Capture frame-by-frame
        ret, frame = cap.read()

        # Our operations on the frame come here
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        gray = cv2.resize(gray, (256, 144))

        prediction = next(net.predict(estimator, gray.T / 255))

        for i in range(data.STRIDE_W):
            for j in range(data.STRIDE_H):
                p = prediction[i][j]
                if p[4] > 0.6:
                    x = i * data.STRIDE + p[0] * data.STRIDE
                    y = j * data.STRIDE + p[1] * data.STRIDE
                    w = p[2] * data.IMAGE_WIDTH
                    h = p[3] * data.IMAGE_HEIGHT

                    cv2.rectangle(gray, (int(x - w / 2), int(y - h / 2)),
                                  (int(x + w / 2), int(y + h / 2)), 2)

        cv2.imshow('frame', gray)
コード例 #8
0
if not os.path.isfile(image_filename):
    print('Unable to find image file', image_filename)
    exit()

# BUGBUG: useful for testing, but probably don't want to assume the
# image is from the image dataset
image_category = image_filename.split(os.sep)[-2]

image_data = data.process_image(args.input)

# create the network
device = 'cuda' if args.gpu else 'cpu'
model = network.load_network(args.checkpoint, device)

# predict
probs, classes = network.predict(image_data, model, device, topk=args.top_k)

# Load the category to name mapping if provided
cat_to_name = None
if args.category_names and os.path.isfile(args.category_names):
    with open(args.category_names, 'r') as f:
        cat_to_name = json.load(f)

# output results
print('Image category:', image_category)
if cat_to_name:
    print('Image name:', cat_to_name[image_category])
print('Probabilities:', probs)
print('Classes:', classes)
if cat_to_name:
    names = [cat_to_name[cat] for cat in classes]
コード例 #9
0
data_split for analysis
predict_data for real life

tempmax=23
df_train,df_predict=predict_data(df_train,date_end,date_predict,tempmax_predict)
'''
#---------------------------------------------------------------------------

#===========================================================================
model = model_build(df_train,
                    epochs=5,
                    batch_size=32,
                    prediction_step=prediction_step)
model.load_weights("weights.best.hdf5")
model.compile(optimizer='adam',
              loss='mean_squared_error',
              metrics=[keras.losses.mean_absolute_percentage_error])
#===========================================================================
predictions = predict(model, df_test, prediction_step)
df_test.drop(
    df_test.head(val_preappended_data + prediction_step).index, inplace=True
)  #8112 corresponds to the removal of values used to make prediction
df_test['Predicted'] = predictions.values
#===========================================================================
plot_values(df_test)
errors(df_test)
#===========================================================================
print("          RUNTIME       \n --- %s seconds ---" %
      (time.time() - start_time))
#===========================================================================
コード例 #10
0
ファイル: predict.py プロジェクト: zhangyou646/udcity
pa = ap.parse_args()
path_image = pa.input_img
number_of_outputs = pa.top_k
power = pa.gpu
input_img = pa.input_img
path = pa.checkpoint

training_loader, testing_loader, validation_loader, train_data = network.load_data(
)

model = network.load_checkpoint(path)

with open('cat_to_name.json', 'r') as json_file:
    cat_to_name = json.load(json_file)

# probabilities = network.predict('./flowers/test/1/image_06743.jpg', model, number_of_outputs, power)
probabilities = network.predict(path_image, model, number_of_outputs, power)

labels = [
    cat_to_name[str(index + 1)] for index in np.array(probabilities[1][0])
]
probability = np.array(probabilities[0][0])

i = 0
while i < number_of_outputs:
    print("{}. {} with a probability of {}".format(i + 1, labels[i],
                                                   probability[i]))
    i += 1

print("----predict happy end------")