コード例 #1
0
            data, labels = data.cuda(), labels.cuda()
        data, labels = Variable(data), Variable(labels)
        data = model(data)
        loss = F.nll_loss(F.log_softmax(data), labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (iteration + 1) % args.interval == 0:
            _, data = th.max(data, 1)
            data = th.squeeze(data)
            n_errors = th.sum(data != labels).data[0]
            print 'batch %d training loss %f %d errors encountered' % (
                iteration + 1, loss.data[0], n_errors)

    n_samples, n_errors = 0, 0
    for batch in validation_loader:
        data, labels = batch
        if args.use_gpu:
            data, labels = data.cuda(), labels.cuda()
        data, labels = Variable(data), Variable(labels)
        _, p = th.max(model(data), 1)
        n_samples += data.size()[0]
        n_errors += th.sum(p != labels).data[0]
    error_rate = n_errors / n_samples

    print 'epoch %d validation error rate %f' % (epoch, error_rate)

th.save(model.state_dict(), open('pretrained-cnn', 'w'))
コード例 #2
0
def main():
    batch_size = 100
    train_data, val_data, test_data = create_train_val_test_split(batch_size)
    data_feeder = DataFeeder(train_data,
                             preprocess_workers=1,
                             cuda_workers=1,
                             cpu_size=10,
                             cuda_size=10,
                             batch_size=batch_size,
                             use_cuda=True,
                             volatile=False)
    data_feeder.start_queue_threads()
    val_data = make_batch(len(val_data),
                          0,
                          val_data,
                          use_cuda=True,
                          volatile=True)
    test_data = make_batch(len(test_data),
                           0,
                           test_data,
                           use_cuda=True,
                           volatile=True)

    cnn = CNN().cuda()
    fcc = FCC().cuda()

    optimizer_cnn = optim.SGD(cnn.parameters(),
                              lr=0.001,
                              momentum=0.9,
                              weight_decay=0.00001)
    optimizer_fcc = optim.SGD(fcc.parameters(),
                              lr=0.001,
                              momentum=0.9,
                              weight_decay=0.00001)

    cnn_train_loss = Logger("cnn_train_losses.txt")
    cnn_val_loss = Logger("cnn_val_losses.txt")
    cnn_val_acc = Logger("cnn_val_acc.txt")
    fcc_train_loss = Logger("fcc_train_losses.txt")
    fcc_val_loss = Logger("fcc_val_losses.txt")
    fcc_val_acc = Logger("fcc_val_acc.txt")

    #permute = Variable(torch.from_numpy(np.random.permutation(28*28)).long().cuda(), requires_grad=False)
    permute = None

    for i in range(100001):
        images, labels = data_feeder.get_batch()
        train(cnn, optimizer_cnn, images, labels, i, cnn_train_loss, permute)
        train(fcc, optimizer_fcc, images, labels, i, fcc_train_loss, permute)
        if i % 100 == 0:
            print(i)
            evaluate_acc(batch_size, cnn, val_data, i, cnn_val_loss,
                         cnn_val_acc, permute)
            evaluate_acc(batch_size, fcc, val_data, i, fcc_val_loss,
                         fcc_val_acc, permute)
        if i in [70000, 90000]:
            decrease_lr(optimizer_cnn)
            decrease_lr(optimizer_fcc)
        if i % 1000 == 0:
            torch.save(cnn.state_dict(),
                       "savedir/cnn_it" + str(i // 1000) + "k.pth")
            torch.save(fcc.state_dict(),
                       "savedir/fcc_it" + str(i // 1000) + "k.pth")

    data_feeder.kill_queue_threads()

    import evaluate
    evaluate.main(permute)
コード例 #3
0
ファイル: train.py プロジェクト: sky-lzy/DailyCode
def train(train_file_path,
          val_file_path,
          in_channels,
          num_class,
          batch_norm,
          dropout,
          n_epochs,
          batch_size,
          lr,
          momentum,
          weight_decay,
          optim_type,
          ckpt_path,
          max_ckpt_save_num,
          ckpt_save_interval,
          val_interval,
          resume,
          device='cpu'):
    '''
    The main training procedure
    ----------------------------
    :param train_file_path: file list of training image paths and labels
    :param val_file_path: file list of validation image paths and labels
    :param in_channels: channel number of image
    :param num_class: number of classes, in this task it is 26 English letters
    :param batch_norm: whether to use batch normalization in convolutional layers and linear layers
    :param dropout: dropout ratio of dropout layer which ranges from 0 to 1
    :param n_epochs: number of training epochs
    :param batch_size: batch size of training
    :param lr: learning rate
    :param momentum: only used if optim_type == 'sgd'
    :param weight_decay: the factor of L2 penalty on network weights
    :param optim_type: optimizer, which can be set as 'sgd', 'adagrad', 'rmsprop', 'adam', or 'adadelta'
    :param ckpt_path: path to save checkpoint models
    :param max_ckpt_save_num: maximum number of saving checkpoint models
    :param ckpt_save_interval: intervals of saving checkpoint models, e.g., if ckpt_save_interval = 2, then save checkpoint models every 2 epochs
    :param val_interval: intervals of validation, e.g., if val_interval = 5, then do validation after each 5 training epochs
    :param resume: path to resume model
    :param device: 'cpu' or 'cuda', we can use 'cpu' for our homework if GPU with cuda support is not available
    '''

    # construct training and validation data loader
    train_loader = dataLoader(train_file_path,
                              norm_size=(32, 32),
                              batch_size=batch_size)
    val_loader = dataLoader(val_file_path, norm_size=(32, 32), batch_size=1)

    model = CNN(in_channels, num_class, batch_norm, dropout)

    # put the model on CPU or GPU
    model = model.to(device)

    # define loss function and optimizer
    loss_func = nn.CrossEntropyLoss()

    if optim_type == 'sgd':
        optimizer = optim.SGD(model.parameters(),
                              lr,
                              momentum=momentum,
                              weight_decay=weight_decay)
    elif optim_type == 'adagrad':
        optimizer = optim.Adagrad(model.parameters(),
                                  lr,
                                  weight_decay=weight_decay)
    elif optim_type == 'rmsprop':
        optimizer = optim.RMSprop(model.parameters(),
                                  lr,
                                  weight_decay=weight_decay)
    elif optim_type == 'adam':
        optimizer = optim.Adam(model.parameters(),
                               lr,
                               weight_decay=weight_decay)
    elif optim_type == 'adadelta':
        optimizer = optim.Adadelta(model.parameters(),
                                   lr,
                                   weight_decay=weight_decay)
    else:
        print(
            '[Error] optim_type should be one of sgd, adagrad, rmsprop, adam, or adadelta'
        )
        raise NotImplementedError

    if resume is not None:
        print('[Info] resuming model from %s ...' % resume)
        checkpoint = torch.load(resume)
        model.load_state_dict(checkpoint['model_state'])
        optimizer.load_state_dict(checkpoint['optimizer_state'])

    # training
    # to save loss of each training epoch in a python "list" data structure
    losses = []
    # to save accuracy on validation set of each training epoch in a python "list" data structure
    accuracy_list = []
    val_epochs = []

    print('training...')
    for epoch in range(n_epochs):
        # set the model in training mode
        model.train()

        # to save total loss in one epoch
        total_loss = 0.

        for step, (input,
                   label) in enumerate(train_loader):  # get a batch of data

            # set data type and device
            input, label = input.type(torch.float).to(device), label.type(
                torch.long).to(device)

            # clear gradients in the optimizer
            optimizer.zero_grad()

            # run the model which is the forward process
            out = model(input)

            # compute the CrossEntropy loss, and call backward propagation function
            loss = loss_func(out, label)
            loss.backward()

            # update parameters of the model
            optimizer.step()

            # sum up of total loss, loss.item() return the value of the tensor as a standard python number
            # this operation is not differentiable
            total_loss += loss.item()

        # average of the total loss for iterations
        avg_loss = total_loss / len(train_loader)
        losses.append(avg_loss)

        # evaluate model on validation set
        if (epoch + 1) % val_interval == 0:
            val_accuracy = eval_one_epoch(model, val_loader, device)
            accuracy_list.append(val_accuracy)
            val_epochs.append(epoch)
            print(
                'Epoch {:02d}: loss = {:.3f}, accuracy on validation set = {:.3f}'
                .format(epoch + 1, avg_loss, val_accuracy))

        if (epoch + 1) % ckpt_save_interval == 0:
            # get info of all saved checkpoints
            ckpt_list = glob.glob(os.path.join(ckpt_path, 'ckpt_epoch_*.pth'))
            # sort checkpoints by saving time
            ckpt_list.sort(key=os.path.getmtime)
            # remove surplus ckpt file if the number is larger than max_ckpt_save_num
            if len(ckpt_list) >= max_ckpt_save_num:
                for cur_file_idx in range(
                        0,
                        len(ckpt_list) - max_ckpt_save_num + 1):
                    os.remove(ckpt_list[cur_file_idx])

            # save model parameters in a file
            ckpt_name = os.path.join(ckpt_path,
                                     'ckpt_epoch_%d.pth' % (epoch + 1))
            save_dict = {
                'model_state': model.state_dict(),
                'optimizer_state': optimizer.state_dict(),
                'configs': {
                    'in_channels': in_channels,
                    'num_class': num_class,
                    'batch_norm': batch_norm,
                    'dropout': dropout
                }
            }

            torch.save(save_dict, ckpt_name)
            print('Model saved in {}\n'.format(ckpt_name))

    plot(losses, accuracy_list, val_epochs, ckpt_path)