コード例 #1
0
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('-e', '--epochs', default='last', type=str)
    parser.add_argument('-d', '--devices', default='1', type=str)
    parser.add_argument('-v', '--verbose', default=False, action='store_true')
    parser.add_argument('--show_image',
                        '-s',
                        default=False,
                        action='store_true')
    parser.add_argument('--save_path', '-p', default=None)

    args = parser.parse_args()
    all_dev = parse_devices(args.devices)

    mp_ctx = mp.get_context('spawn')
    network = CPNet(config.num_classes, criterion=None)
    data_setting = {
        'img_root': config.img_root_folder,
        'gt_root': config.gt_root_folder,
        'train_source': config.train_source,
        'eval_source': config.eval_source
    }
    dataset = ADE(data_setting, 'val', None)

    with torch.no_grad():
        segmentor = SegEvaluator(dataset, config.num_classes,
                                 config.image_mean, config.image_std, network,
                                 config.eval_scale_array, config.eval_flip,
                                 all_dev, args.verbose, args.save_path,
                                 args.show_image)
        segmentor.run(config.snapshot_dir, args.epochs, config.val_log_file,
コード例 #2
0
    if engine.distributed:
        torch.cuda.set_device(engine.local_rank)

    # data loader
    train_loader, train_sampler = get_train_loader(engine, ADE)

    # config network and criterion
    criterion = nn.CrossEntropyLoss(reduction='mean', ignore_index=-1)

    if engine.distributed:
        logger.info('Use the Multi-Process-SyncBatchNorm')
        BatchNorm2d = SyncBatchNorm
    # else:
    #     BatchNorm2d = BatchNorm2d
    model = CPNet(config.num_classes,
                  criterion=criterion,
                  pretrained_model=config.pretrained_model,
                  norm_layer=BatchNorm2d)
    init_weight(model.business_layer,
                nn.init.kaiming_normal_,
                BatchNorm2d,
                config.bn_eps,
                config.bn_momentum,
                mode='fan_in',
                nonlinearity='relu')

    # group weight and config optimizer
    base_lr = config.lr
    # if engine.distributed:
    #     base_lr = config.lr * engine.world_size

    params_list = []