コード例 #1
0
    def _init_network(self):
        def init_weights(m):
            if type(m) == nn.Conv2d:
                nn.init.normal_(m.weight.data, 0.0, 0.02)
            if type(m) == nn.BatchNorm2d:
                nn.init.normal_(m.weight.data, 0.0, 0.02)
                nn.init.constant_(m.bias.data, 0.0)

        generator = Generator(DCGAN_Config).to(self.device)
        discriminator = Discriminator(DCGAN_Config).to(self.device)
        
        if self.device.type =='cuda' and DCGAN_Config['ngpu']>1:
            generator = nn.DataParallel(generator, list(range(DCGAN_Config['ngpu'])))
            discriminator = nn.DataParallel(discriminator, list(range(DCGAN_Config['ngpu'])))

        generator.apply(init_weights)
        discriminator.apply(init_weights)

        print(generator)
        print(discriminator)

        return generator, discriminator
コード例 #2
0
ファイル: debug.py プロジェクト: whitecrow1027/cycleGAN
# img=dataset.__getitem__(10)
# print(img['A'].size())

netG_A2B = Generator(opt.input_nc, opt.output_nc, opt.ngf)
netG_B2A = Generator(opt.input_nc, opt.output_nc, opt.ngf)
netD_A = Discriminator(opt.input_nc, opt.ndf)
netD_B = Discriminator(opt.input_nc, opt.ndf)

summary(netG_A2B, input_size=(3, 256, 256), device='cpu')
summary(netD_A, input_size=(3, 256, 256), device='cpu')

#instialize weights
netG_A2B.apply(weights_init)
netG_B2A.apply(weights_init)
netD_A.apply(weights_init)
netD_B.apply(weights_init)

#print(netG_A2B)

#print(netD_A)

# Lossess
gan_loss = torch.nn.MSELoss()
cycle_consistency_loss = torch.nn.L1Loss()

#optimizers
optimizerG_A2B = optim.Adam(netG_A2B.parameters(),
                            lr=opt.lr,
                            betas=(opt.beta1, 0.999))
optimizerG_B2A = optim.Adam(netG_B2A.parameters(),
コード例 #3
0
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)


NetG = Decoder(nc, ngf, nz).to(device)
NetD = Discriminator(imageSize, nc, ndf, nz).to(device)
NetE = Encoder(imageSize, nc, ngf, nz).to(device)
Sampler = Sampler().to(device)

NetE.apply(weights_init)
NetG.apply(weights_init)
NetD.apply(weights_init)

# load weights
if opt.netE != '':
    NetE.load_state_dict(torch.load(opt.netE))
if opt.netG != '':
    NetG.load_state_dict(torch.load(opt.netG))
if opt.netD != '':
    NetD.load_state_dict(torch.load(opt.netD))

optimizer_encorder = optim.RMSprop(params=NetE.parameters(),
                                   lr=lr,
                                   alpha=0.9,
                                   eps=1e-8,
                                   weight_decay=0,
                                   momentum=0,
コード例 #4
0
D_A = Discriminator().to(device)
D_B = Discriminator().to(device)

def weights_init(m):
    if isinstance(m, nn.Conv2d):
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)

if opt.load_pretrained:
    G_A2B.load_state_dict(torch.load('pretrained/G_A2B.pth'))
    G_B2A.load_state_dict(torch.load('pretrained/G_B2A.pth'))
    D_A.load_state_dict(torch.load('pretrained/D_A.pth'))
    D_B.load_state_dict(torch.load('pretrained/D_B.pth'))
else:
    G_A2B.apply(weights_init)
    G_B2A.apply(weights_init)
    D_A.apply(weights_init)
    D_B.apply(weights_init)

criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()


G_params = list(G_A2B.parameters()) + list(G_B2A.parameters())
D_params = list(D_A.parameters()) + list(D_B.parameters())
optimizer_G = optim.Adam(G_params, lr=0.0002, betas=[0.5, 0.999])
optimizer_D = optim.Adam(D_params, lr=0.0002, betas=[0.5, 0.999])

fake_A_buffer = utils.ReplayBuffer()
fake_B_buffer = utils.ReplayBuffer()
logger = utils.Logger(opt.n_epochs, len(loader_A), vis)
コード例 #5
0
#BUILDING NETWORK STRUCTURE
generator = Generator(128)
discriminator = Discriminator(128)
generator.cuda()
discriminator.cuda()

def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
        torch.nn.init.constant_(m.bias.data, 0.0)

generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

criterion = nn.BCELoss()
criterion.cuda()
optimizer_disc = optim.Adam(discriminator.parameters(),lr=learning_rate, betas=(0.5, 0.999))
optimizer_gen = optim.Adam(generator.parameters(), lr=learning_rate, betas=(0.5, 0.999))

Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

print("Training...")

#TRAINING
for epoch in range(n_epoch):
    for i, imgs in enumerate(training_data_loader):
        real = Variable(Tensor(imgs.shape[0], 1).fill_(0.9), requires_grad=False)
        fake = Variable(Tensor(imgs.shape[0], 1).fill_(0.1), requires_grad=False)
コード例 #6
0
class MUNIT(nn.Module):
    def __init__(self, opt):
        super(MUNIT, self).__init__()

        # generators and discriminators
        self.gen_a = Generator(opt.ngf, opt.style_dim, opt.mlp_dim)
        self.gen_b = Generator(opt.ngf, opt.style_dim, opt.mlp_dim)
        self.dis_a = Discriminator(opt.ndf)
        self.dis_b = Discriminator(opt.ndf)
        #random style code
        self.s_a = torch.randn(opt.display_size,
                               opt.style_dim,
                               1,
                               1,
                               requires_grad=True).cuda()
        self.s_b = torch.randn(opt.display_size,
                               opt.style_dim,
                               1,
                               1,
                               requires_grad=True).cuda()

        #optimizers
        dis_params = list(self.dis_a.parameters()) + list(
            self.dis_b.parameters())
        gen_params = list(self.gen_a.parameters()) + list(
            self.gen_b.parameters())
        self.dis_opt = torch.optim.Adam(dis_params,
                                        lr=opt.lr,
                                        beta=opt.beta1,
                                        weight_delay=opt.weight_delay)
        self.gen_opt = torch.optim.Adam(gen_params,
                                        lr=opt.lr,
                                        beta=opt.beta1,
                                        weight_delay=opt.weight_delay)

        # nerwork weight initialization
        self.apply(weight_init('kaiming'))
        self.dis_a.apply(weight_init('gaussian'))
        self.dis_b.apply(weight_init('gaussian'))

    def forward(self, x_a, x_b):
        c_a, s_a_prime = self.gen_a.encode(x_a)
        c_b, s_b_prime = self.gen_b.encode(x_b)
        x_a2b = self.gen_b.decode(c_a, self.s_b)
        x_b2a = self.gen_a.decode(c_b, self.s_a)
        return x_a2b, x_b2a

    def backward_G(self, x_a, x_b):

        #encoding and decoding
        s_a = torch.randn(x_a.size(0), opt.style_dim, 1, 1,
                          requires_grad=True).cuda()
        s_b = torch.randn(x_b.size(0), opt.style_dim, 1, 1,
                          requires_grad=True).cuda()
        c_a, s_a_prime = self.gen_a.encode(x_a)
        c_b, s_b_prime = self.gen_b.encode(x_b)
        x_a_rec = self.gen_a.decode(c_a, s_a_prime)
        x_b_rec = self.gen_b.decode(c_b, s_b_prime)
        x_a2b = self.gen_b.decode(c_a, s_b)
        x_b2a = self.gen_a.decode(c_b, s_a)
        c_a_rec, s_b_rec = self.gen_b.encode(x_a2b)
        c_b_rec, s_a_rec = self.gen_a.encode(x_b2a)
        x_a_fake = self.dis_a(x_b2a)
        x_b_fake = self.dis_b(x_a2b)

        #loss function
        self.loss_xa = recon_loss(x_a_rec - x_a)
        self.loss_xb = recon_loss(x_b_rec - x_b)
        self.loss_ca = recon_loss(c_a_rec - c_a)
        self.loss_cb = recon_loss(c_b_rec - c_b)
        self.loss_sa = recon_loss(s_a_rec - s_a)
        self.loss_sb = recon_loss(s_b_rec - s_b)
        if opt.x_cyc_w > 0:
            x_a2b2a = self.gen_b.decode(c_a_rec, s_a_prime)
            x_b2a2b = self.gen_a.decode(c_b_rec, s_b_prime)
            self.loss_cyc_a2b = recon_loss(x_a2b2a, x_a)
            self.loss_cyc_b2a = recon_loss(x_b2a2b, x_b)
        else:
            self.loss_cyc_a2b = 0
            self.loss_cyc_b2a = 0
        self.loss_gen_a = gen_loss(x_a_fake, opt.gan_type)
        self.loss_gen_b = gen_loss(x_b_fake, opt.gan_type)

        self.gen_total_loss = opt.gan_w*(self.loss_gen_a+self.loss_gen_b)+\
                              opt.x_w*(self.loss_xa+self.loss_xb)+\
                              opt.c_w*(self.loss_ca+self.loss_cb)+\
                              opt.s_w*(self.loss_sa+self.loss_sb)+\
                              opt.x_cyc_w*(self.loss_cyc_a2b+self.loss_cyc_b2a)
        self.gen_total_loss.backward()
        return self.gen_total_loss

    def barkward_D(self, x_a, x_b):
        s_a = torch.randn(x_a.size(0), opt.style_dim, 1, 1,
                          requires_grad=True).cuda()
        s_b = torch.randn(x_b.size(0), opt.style_dim, 1, 1,
                          requires_grad=True).cuda()
        c_a, _ = self.gen_a.encode(x_a.detach())
        c_b, _ = self.gen_b.encode(x_b.detach())
        x_a2b = self.gen_b.decode(c_a, s_b)
        x_b2a = self.gen_a.decode(c_b, s_a)
        x_a_real = self.dis_a(x_a.detach())
        x_a_fake = self.dis_a(x_b2a)
        x_b_real = self.dis_b(x_b.detach())
        x_b_fake = self.dis_b(x_a2b)

        self.loss_dis_a = dis_loss(x_a.detach(), x_b2a, opt.gan_type)
        self.loss_dis_b = dis_loss(x_b.detach(), x_a2b, opt.gan_type)
        self.dis_total_loss = opt.gan_w * (self.loss_dis_a + self.loss.dis_b)

        self.dis_total_loss.backward()
        return self.dis_total_loss

    def optimize_parameters(self, x_a, x_b):
        self.gen_opt.zero_grad()
        self.dis_opt.zero_grad()
        self.backward_G(x_a, x_b)
        self.barkward_D(x_a, x_b)
        self.gen_opt.step()
        self.dis_opt.step()

    def sample(self, x_a, x_b, num_style):
        x_a2b = []
        x_b2a = []
        for i in range(x_a.size(0)):
            s_a = torch.randn(num_style, opt.style_dim, 1, 1).cuda()
            s_b = torch.randn(num_style, opt.style_dim, 1, 1).cuda()
            c_a_i, _ = self.gen_a.encode(x_a[i].unsqueeze(0))
            c_b_i, _ = self.gen_b.encode(x_b[i].unsqueeze(0))
            x_i_a2b = []
            x_i_b2a = []
            for j in range(num_style):
                #[1,opt.style_dim,1,1]
                s_a_j = s_a[j].unsqueeze(0)
                s_b_j = s_b[j].unsqueeze(0)
                x_i_a2b.append(self.gen_b.decode(c_a_i, s_b_j))
                x_i_b2a.append(self.gen_a.decode(c_b_i, s_a_j))
            #[num_style,c,h,w]
            x_i_a2b = torch.cat(x_i_a2b, dim=0)
            x_i_b2a = torch.cat(x_i_b2a, dim=0)
            x_a2b.append(x_i_a2b)
            x_b2a.append(x_i_b2a)
        #[batch_size,num_style,c,h,w]
        x_a2b = torch.stack(x_a2b)
        x_b2a = torch.stack(x_b2a)
        #[batch_size*num_style,c,h,w]
        x_a2b = x_a2b.view(-1, x_a2b.size()[2:])
        x_b2a = x_b2a.view(-1, x_b2a.size()[2:])
        return x_a2b, x_b2a

    def test(self, input, direction, style):
        output = []
        if direction == 'a2b':
            encoder = self.gen_a.encode()
            decoder = self.gen_b.decode()
        else:
            encoder = self.gen_b.encode()
            decoder = self.gen_a.decode()
        content, _ = encode(input.unsqueeze(0))
        for i in range(style.size()):
            output.append(decoder(content, style[i].unsqueeze(0)))
        output = torch.cat(output, dim=0)
        return output

    def save(self, save_dir, iterations):
        save_gen = os.path.join(save_dir, 'gen_%8d.pt' % (iteration + 1))
        save_dis = os.path.join(save_dir, 'dis_%8d.pt' % (iteration + 1))
        save_opt = os.path.join(save_dir, 'optimizer.pt')
        torch.save({
            'a': self.gen_a.state_dict(),
            'b': self.gen_b.state_dict()
        }, save_gen)
        torch.save({
            'a': self.dis_a.state_dict(),
            'b': self.dis_b.state_dict()
        }, save_dis)
        torch.save(
            {
                'gen': self.gen_opt.state_dict(),
                'dis': self.dis_opt.state_dict()
            }, save_opt)
コード例 #7
0
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and args.ngpu > 0) else "cpu")

# Create the generator
netG = Generator(args.ngpu, args.nc, args.nz, args.ndf, args.ngf).to(device)
if (device.type == 'cuda') and (args.ngpu > 1):
    netG = nn.DataParallel(netG, list(range(args.ngpu)))
netG.apply(weights_init)
print(netG)


# Create the Discriminator
netD = Discriminator(args.ngpu, args.nc, args.nz, args.ndf, args.ngf).to(device)
if (device.type == 'cuda') and (args.ngpu > 1):
    netD = nn.DataParallel(netD, list(range(args.ngpu)))
netD.apply(weights_init)
print(netD)


# Initialize BCELoss function
criterion = nn.BCELoss()

# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
if args.truncnorm:
    fixed_noise = torch.from_numpy(truncated_z_sample(64, args.nz, args.tc_th, args.manualSeed)).float().to(device)
else:
    fixed_noise = torch.randn(64, args.nz, 1, 1, device=device)

# Establish convention for real and fake labels during training
real_label = 1
コード例 #8
0
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from utils import imshow_grid, mse_loss, reparameterize, l1_loss
from network import Generator, Discriminator
from torchvision.utils import save_image

batch_size = 8
num_epochs = 500
image_size = 128

generator = Generator(nc_dim=80)
generator.apply(weights_init)
generator = generator.cuda()

discriminator = Discriminator()
discriminator.apply(weights_init)
discriminator = discriminator.cuda()

ones_label = torch.ones(batch_size)
ones_label = Variable(ones_label.cuda())
zeros_label = torch.zeros(batch_size)
zeros_label = Variable(zeros_label.cuda())

loss = nn.BCEWithLogitsLoss()


def to_img(x):
    x = x.clamp(0, 1)
    x = x.view(x.size(0), 3, 128, 128)
    return x
コード例 #9
0
	parser = argparse.ArgumentParser()
	parser.add_argument('--model_name', default='test')
	parser.add_argument('--batch_size', default=64)
	parser.add_argument('--lr', type=float, default=5e-3)
	parser.add_argument('--l1', type=float, default=1e1)
	parser.add_argument('--num_iters', type=int, default=100)
	parser.add_argument("--train", dest="train", default=False, action="store_true")  # noqa
	parser.add_argument('--test_save_path', default='test')
	args = parser.parse_args()

	train_loader,val_loader,test_loader = read_data(args.batch_size)
	network = Network()
	network.apply(weights_init)

	d = Discriminator()
	d.apply(weights_init)
	bce_loss = torch.nn.BCEWithLogitsLoss()
	true_crit, fake_crit = torch.ones(args.batch_size, 1, device='cuda'), torch.zeros(args.batch_size, 1, device='cuda')
	
	print(network)
	train_loss = []
	val_loss = []
	if args.train:
		optimizer = torch.optim.Adam(network.parameters(), lr=args.lr)
		d_optimizer = torch.optim.Adam(d.parameters(), lr=args.lr)
		network.cuda()
		d.cuda()
		for epoch in range(args.num_iters):
			train_loader,val_loader,test_loader = read_data(args.batch_size)
			network.train()
			for idx, x in enumerate(train_loader):