padded_markers = numpy.array([mark_word_boundaries([map_ind_2_chr[ind] for ind in seq]) for seq in seq_batch]) padded_markers = padded_markers.flatten(order="C") return padded_markers[mask_batch.flatten(order="C") == 1] def mark_letter(seq_batch, mask_batch, letter): padded_markers = 1*numpy.array([[map_ind_2_chr[char] == letter for char in seq] for seq in seq_batch]) padded_markers = padded_markers.flatten(order="C") return padded_markers[mask_batch.flatten(order="C") == 1] map_chr_2_ind = cPickle.load(open("char_to_ind.pkl")) map_ind_2_chr = cPickle.load(open("ind_to_char.pkl")) lstm_net = Network(NetworkType.LSTM, input_dim=len(map_ind_2_chr), hidden_dims=[512, 512, 512]) lstm_net.set_parameters('seqgen_lstm_512_512_512.pkl') # having a look at connectioneros from the cellsinas to the outputsos params = lstm_net.cost_model.get_parameter_values() for param in params: print param # this section deals with prediction probabilities """ readouts = VariableFilter(theano_name="readout_readout_output_0")(lstm_net.cost_model.variables)[0] char_probs = lstm_net.generator.readout.emitter.probs(readouts) prob_function = function([lstm_net.x, lstm_net.mask], char_probs)
padded_markers = padded_markers.flatten(order="C") return padded_markers[mask_batch.flatten(order="C") == 1] if args.function == "len": corr_function = mark_seq_len_batch elif args.function == "bound": corr_function = mark_word_boundaries_batch else: raise ValueError("Invalid correlation function specified!") map_chr_2_ind = cPickle.load(open("char_to_ind.pkl")) map_ind_2_chr = cPickle.load(open("ind_to_char.pkl")) lstm_net = Network(NetworkType.SIMPLE_RNN, len(map_ind_2_chr), hidden_dims=[1024]) lstm_net.set_parameters('seqgen_simple_1024.pkl') # having a look at connectioneros from the cellsinas to the outputsos params = lstm_net.cost_model.get_parameter_values() for param in params: print param # define a function that gets the overall "sum of scores" at a given time step readouts = VariableFilter(theano_name="readout_readout_output_0")(lstm_net.cost_model.variables)[0] score_function = function([lstm_net.x, lstm_net.mask], readouts.sum(axis=2)) # this section of the playground has some fun rides that revolve around various correlation stuff. uncomment to access # =) sc = StateComputer(lstm_net.cost_model, map_chr_2_ind)